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A decade ago mainstream molecular biologists regarded it impossible or biologically ill-motivated to understand the dynamics of
complex biological phenomena, such as cancer genesis and progression, from a network perspective. Indeed, there are numerical
difficulties even for those who were determined to explore along this direction. Undeterred, seven years ago a group of Chinese
scientists started a program aiming to obtain quantitative connections between tumors and network dynamics. Many interesting
results have been obtained. In this paper we wish to test such idea from a different angle: the connection between a normal
biological process and the network dynamics. We have taken early myelopoiesis as our biological model. A standard roadmap
for the cell-fate diversification during hematopoiesis has already been well established experimentally, yet little was known
for its underpinning dynamical mechanisms. Compounding this difficulty there were additional experimental challenges, such
as the seemingly conflicting hematopoietic roadmaps and the cell-fate inter-conversion events. With early myeloid cell-fate
determination in mind, we constructed a core molecular endogenous network from well-documented gene regulation and signal
transduction knowledge. Turning the network into a set of dynamical equations, we found computationally several structurally
robust states. Those states nicely correspond to known cell phenotypes. We also found the states connecting those stable states.
They reveal the developmental routes—how one stable state would most likely turn into another stable state. Such interconnected
network among stable states enabled a natural organization of cell-fates into a multi-stable state landscape. Accordingly, both the
myeloid cell phenotypes and the standard roadmap were explained mechanistically in a straightforward manner. Furthermore,
recent challenging observations were also explained naturally. Moreover, the landscape visually enables a prediction of a pool of
additional cell states and developmental routes, including the non-sequential and cross-branch transitions, which are testable by
future experiments. In summary, the endogenous network dynamics provide an integrated quantitative framework to understand
the heterogeneity and lineage commitment in myeloid progenitors.
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INTRODUCTION

Long ago it had been pioneered by a few biologists that it
should be possible to understand complex phenomena such
as cancer from network dynamics perspective. A noticeable
example was that of a cancer hallmark paper (Hanahan and
Weinberg, 2000). While the hallmarks were regarded sensi-
ble, the network had been met with strong resistance and it
was regarded as most metaphoric, if not wrong. Indeed, it
was soon surely realized that such networks were necessar-
ily incomplete now and in the foreseeable future. Incomplete
information problem may be overcome with more and more
high-throughput technologies and research efforts, a few ad-
ditional critical issues were pointed out, nevertheless. For
example, even up to current stage of research, most networks
in biology are of input-out type, which are logically incom-
plete. Furthermore, if one would obtain such networks from
increasingly higher and higher throughput data, it would not
be possible to establish the corresponding dynamical equa-
tions because of missing information on kinetic parameters.
Those issues have been taken up seriously during the past
18 years. We have been reasoned that it should indeed be
possible to understand cancer genesis and progression from
network perspective, and hence proposed systematically an
endogenous network perspective (Ao et al., 2008). To obtain
a minimum understanding, we reasoned that there should be
a minimum set of core modules and pathways, for example,
(improper) immune response and (abnormal) metabolism, in
addition to usual cell cycle and apoptosis. While genome in-
stability and aneuploidy are strongly associated with cancers,
we demonstrated that they are not important from mechanis-
tic side, and those phenomena should be explainable by the
endogenous network theory (Ao, 2007). The reason is ob-
vious: at least for a time scale much larger than the typical
cell cycle time, so-called cancers are still biologically func-
tioning. Even the endogenous network theory had not been
yet accepted as a mainstream theory, the revised cancer hall-
mark paper had taken those ideas (Hanahan and Weinberg,
2011). The important hallmarks adding into the revised are:
deregulating cellular energetics; avoiding immune destruc-
tion; genome instability and mutation; tumor-promoting in-
flammation, four of them discussed during the process to es-
tablish the endogenous network theory. On the quantitative
side, for nearly 10 years network dynamical modeling for var-
ious specific cancers has also demonstrated the essential cor-

rectness of endogenous network approach (Wang et al., 2016;
Yuan et al., 2016). A question naturally arises: if it is a gen-
eral biological theory, it should be applicable to normal bi-
ological processes, too. In the present article we apply the
theory to an experimentally well-established process: a spe-
cific hematopoiesis, early developmental stages of myeloid
cells.
Blood contains various cell types generated daily in the

bone marrow with rapid turnover rates. The tightly regu-
lated hematopoietic development plays key roles in establish-
ment and maintenance of blood homeostasis (Orkin and Zon,
2008). Revealing the cell-fate determination and coordina-
tion during hematopoiesis is of great significance and con-
tributes to elucidating the genesis of malignant or aplastic dis-
eases (Tenen, 2003; Young et al., 2008). A standard roadmap
of hematopoietic development has been established from a
wide range of experimental observations (Figure S1 in Sup-
porting Information): hematopoietic stem cells (HSCs), char-
acterized by their durably self-renewal capacity, lie on the top
of the stream; downstream of HSCs are pools of cell interme-
diates (also known as progenitors) that successively undergo
a step-by-step fate restriction (Akashi et al., 2000; Kondo et
al., 1997; Weissman, 2000). Specifically, HSCs give rise
to multi-potent progenitors (MPPs) that generate two ma-
jor lineage-restricted intermediates: common lymphoid pro-
genitors (CLPs) and common myeloid progenitors (CMPs).
CLPs lose myeloid potential, but retain the ability to form
all lymphoid lineage cells. CMPs subsequently develop into
more specific progenitors, including megakaryocyte/erythro-
cyte progenitors (MEPs) and granulocyte/monocyte progen-
itors (GMPs). These bi-potent progenitors further develop
into distinct myeloid cell types: erythrocytes and megakary-
ocytes fromMEPs, granulocytes and monocytes from GMPs.
The standard roadmap, which highlights the stepwise and hi-
erarchical manner of hematopoietic development, serves as
an operational paradigm for understanding the multi-lineage
diversification from a stem cell pool (Bryder et al., 2006).
Although such a hematopoietic scheme was well estab-

lished experimentally, little has been known about its under-
pinning organization principles. In addition, many aspects
of the hematopoietic development are still controversial. For
example, further experimental evidences have led to a se-
ries of revisions of the standard roadmap, but a clear consen-
sus on hematopoiesis is still missing (Adolfsson et al., 2005;
Yamamoto et al., 2013); the “reprogramming” or “trans-pro-
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gramming” events have been extensively observed in exper-
iments, which raised questions for the hierarchical model of
development (Graf, 2011; Ji et al., 2013; Riddell et al., 2014).
In this work, we sought a comprehensive and quantitative
understanding of cell-fate organization during hematopoietic
development.
Network models, based on the assumption that genotypes

are in general related to phenotypes by a network of bio-
chemical reactions, have shown considerable promise in re-
cent years for revealing the underlying molecular basis of bi-
ological phenomenon (Ao et al., 2008; Cahan et al., 2014).
Two main and opposite approaches have been used: one is
to use various bioinformatics and statistical tools to infer the
networks from data; the other is to seek for the causal rela-
tions among molecular agents. Along the latter approach, we
have introduced an endogenous molecular-cellular network
theory based on salient properties of biological system (Ao
et al., 2008; Wang et al., 2013; Zhu et al., 2004). Taking
early myeloid cell-fate determination as an illustrative exam-
ple, we constructed a core endogenous network by integrat-
ing the accumulated gene regulation and signal transduction
knowledge. We quantified the core network and obtained a
set of structurally robust states, including 13 stable states and
42 unstable states. Comparing with independent experimen-
tal observations and data, we found that the stable states cap-
tured the core features of certain cell-fates in early myeloid
development, such as the quiescent or apoptotic erythrocytes,
and that the unstable states captured the core features of cell
intermediates, such as GMPs and MEPs. The transition be-
tween stable states is more probable passing through certain
unstable state, and further analysis revealed that the intercon-
nections among these robust states accorded with the known
developmental routes, which enabled a natural organization
of different cell-fates into a multi-stable state “landscape”
(Takahashi and Yamanaka, 2015; Waddington, 1942; Wright,
1932).
Accordingly, we obtained a quantitative developmental

scheme to understand the early myeloid cell-fate determina-
tion, which led to several attractive consequences. Firstly, the
quantitative model mechanistically explained the myeloid
phenotypes and standard roadmap model in a straightforward
way. The stepwise fate-restriction can be envisaged as the
process that a cell transits from stem cell state to specialized
cell state, successively passing through a series of unstable
states representing certain cell intermediates. Secondly,
some seemingly controversial observations are expected
from the landscape point of view and can be integrated
into a single model in principle. The endogenous network
dynamics explained and integrated several revised roadmap
models and the cell-fate inter-conversion events coherently,
including myeloid-bypass model (Yamamoto et al., 2013),
megakaryocyte-biased model (the counterpart of LMPP

model) (Sanjuan-Pla et al., 2013) and the myeloid trans-dif-
ferentiation events under specific gene manipulation (Graf,
2002). Thirdly, the endogenous network dynamics predicted
the existence of additional cell intermediates and develop-
mental routes, including the non-sequential and cross-branch
transitions, testable by future experiments. In summary,
the present quantitative model provides a comprehensive
understanding towards the hard-wiring of myeloid cell-fates
and suggests a more complex picture of development than
previous thought.

RESULTS

Core    endogenous    network    of    early    myeloid    cell-fate
determination

Hematopoiesis is a highly orchestrated developmental
process, where the cell fate options, including self-renewal,
cell death, metabolism and lineage-specification, are tightly
regulated to maintain the homeostasis of blood system
(Folmes et al., 2012; Orkin and Zon, 2008; Weissman, 2000;
Zhao and Li, 2015). Taking early myeloid cell-fate deter-
mination as an example, we constructed a core endogenous
network by integrating the well-documented knowledge to
reveal the underlying molecular basis. Endogenous network
was defined as a molecular-cellular network shaped by
million years of evolution, whose core structure and main
properties are conserved (Ao et al., 2008; Wang et al., 2013;
Yuan et al., 2017). A set of essential modules, including
cell cycle, metabolism, apoptosis and differentiation, was
selected to capture the core features of early myeloid devel-
opment. According to the well-documented gene regulation
and signal transduction knowledge (Alberts et al., 2008),
each module was simplified and specified by a set of key
agents to capture the main functional status (Tables S1 and
S2 in Supporting Information). The interactions among
agents were summarized from well-documented gene reg-
ulation and signaling transduction with solid bio-chemical
basis (Table S3 in Supporting Information). Given the uni-
versal existence and significance of feedback regulations in
biological system (Thomas et al., 1995), the network was
organized closed. Accordingly, a core endogenous network
of early myeloid cell-fate determination was constructed,
which included 45 agents and 177 interactions (Figure 1). It
should be admitted that many details have been simplified in
the core endogenous network. Indeed, functional modules
involved in early myeloid development are far more than the
four modules selected above; large amounts of agents have
not been included in the present model yet. However, we will
show in the following parts that, despite such simplification,
the dynamics of this core network have already been able to
capture the core features of early myeloid development, and
to provide a series of clear-cut predictions.
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Figure 1         Core endogenous network for early myeloid development. The core endogenous network was formed by a minimal set of essential modules, includ-
ing cell cycle, metabolism, apoptosis and differentiation. Each module was specified by a set of key agents, which interconnected with each other via signaling
pathways and gene regulations. The green line denotes the activated/up-regulated interactions, while the red line denotes the inhibited/down-regulated interac-
tions among these agents, and the arrow or dot represents the direction of interaction.

Quantitative analysis provided unparalleled precision to
reveal the emerging properties of complex systems that were
difficult to be understood by intuition or linear reasoning
alone (Qian, 2013). Therefore, the core endogenous net-
work was further described quantitatively by a non-linear
dynamical system. The fixed points, in which system would
remain stationary unless perturbation occurred, were cal-
culated and analyzed. Mathematically, fixed points were
classified into two types: stable states, characterized by all
negative eigenvalues in the real part of the Jacobian matrix,
and unstable states, characterized by at least one positive
eigenvalue in the real part of the Jacobian matrix (Arnold
and Levi, 1988). In a stable state, the system is insensitive
to small perturbations and tends to return to the initial stable
state when small perturbation occurs; while in an unstable
state, the system is more sensitive and would evolve to
certain stable states upon perturbation. From the landscape
point of view, the stable states can be envisaged intuitively
as basins and the unstable states can be viewed as peeks or
saddles between neighboring basins (Figure 2A and B). The
transition between stable states is more probable passing
through certain unstable states. Therefore, the unstable
states with single positive eigenvalue in the real part of their
Jacobian matrix, commonly known as saddles, were defined

as transition states (of rank 1). The unstable states with n
(n≥2) positive eigenvalues in the real part of their Jacobian
matrix were defined as hyper-transition states of rank n.
Specifically, the core endogenous network was described

by a set of ordinary differential equations (ODEs). Since
many detailed mechanisms and parameters of the agent in-
teractions are still unknown, we considered a trade-off be-
tween model tractability and details, and used a dimension-
less modeling framework here by normalizing the agent val-
ues that range continuously between 0 and 1. “0” repre-
sented complete inactivation, while “1” represented full ac-
tivation. Here, we mainly focus on fixed points, whereas
some more complex features of the dynamical system, such
as the limit cycles, will not be discussed in detail at the first
stage. We obtained a striking result that 13 stable states (Ta-
bles S5−S16, S34 in Supporting Information) and 42 unstable
states (Tables S17−S20, S35−S38 in Supporting Information)
robustly existed by using different equation forms or parame-
ter values (Table S4 in Supporting Information), when setting
0.5 as threshold to classify each agent as activated or inac-
tivated (represented as 1/0). The threshold can be selected
within a range from 0.3 to 0.7, which will not affect the main
conclusions. To check the internal consistency of modeling,
the core endogenous network was further approximated by
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the Boolean dynamics (Supplementary 2.2 in Supporting In-
formation). Thirteen stable states were obtained (Table S21
in Supporting Information), which perfectly agreed with the
stable states obtained in ODE dynamical system. We had
showed elsewhere that fixed points found byODEswill corre-
spond to those in stochastic differentiation equations (SDEs),
by using a new stochastic integration (Tang et al., 2014a, b;
Tang et al., 2014c; Yuan and Ao, 2012). The results demon-
strated that these states were determined by the topology of
the endogenous network rather than by the selected equation
forms or parameter values. The statistical significance of
multi-stability of endogenous network dynamics was tested
(Figure 2C).

Robust    stable    states    reproduced    the core features of
certain cell-fates

The concept of stable state has been widely used to represent
stable cell phenotypes (Ao et al., 2008; Huang et al., 2009;
Wang et al., 2013). The biological meanings of each sta-
ble state generated from the core endogenous network have

been analyzed at the modular level. The status of cell cy-
cle, apoptosis, metabolism and differentiation was specified
by the agent values in each state (Models and methods, Sup-
plementary 3.1 in Supporting Information). In specific, the
status of cell cycle and apoptosis was described by ‘On’ or
‘Off’, while the metabolism status was described as ‘Aero-
bic’ or ‘Anaerobic’. The status of differentiation module was
specified by a set of activated/highly-expressed lineage-spe-
cific TFs. Since the expression of lineage-specific TFs in dif-
ferentiation module served as the molecular identity of each
cell type (Laiosa et al., 2006; Rosenbauer and Tenen, 2007),
the 13 stable states were classified into six groups (G1-G6)
based on their differentiation module status (Table 1).
In the standard roadmap (Akashi et al., 2000), five sta-

ble cell types, including HSCs, neutrophils (granulocytes),
monocytes, erythrocytes and megakaryocytes, existed in
the early myeloid development (Figure S1 in Supporting
Information). Functional status of the five cell types was
summarized from well-documented experimental observa-
tions (Table 2A).  In  specific,  HSCs  were characterized  by

Figure 2         Quantifying the endogenous network. A, The fixed points (stable states and unstable states). Stable states can be envisaged as wells with low potential
energy, in which the system will be insensitive to small perturbations (red node). Unstable states can be viewed as peeks or saddles between neighboring wells.
The unstable states with one positive eigenvalue (known as saddles) were defined as transition states (green node), while the unstable states with n positive
eigenvalues were defined as hyper-transition states of n rank (blue node). B, Interconnection among states. Upon perturbations, the system in an unstable state
will evolve to specific stable states. C, The statistical significance of multi-stability of endogenous network dynamics. To assess the statistical significance of
the multi-stable states generated from the core endogenous network versus what would be expected by chance, we quantified 10,612 randomized networks by
using Boolean analysis and computed the number of stable states Qstable in each randomized network. The distribution of the number of stable states (Qstable)
generated by each randomized network is shown in this figure.

Table 1        The module status of the robust stable states and the classificationa)

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
Stable state

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13

Cell cycle On On Off Off Off Off Off Off Off Off Off Off Off

Apoptosis Off Off Off Off On On On On On Off On Off On

Metabolism Anaer-
obic

Anaer-
obic

Anaer-
obic

Aero-
bic

Aero-
bic

Aero-
bic

Aero-
bic

Aero-
bic

Aero-
bic Aerobic Aero-

bic Aerobic Aero-
bic

Differentiation GATA-2 C.EBPs
Gfi-1

PU.1
C/EBPs
Egr/Nab

GATA-1
EKLF

GATA-1
Fli-1

GATA-2
C/EBPs
Gfi-1

a) The module status of cell cycle, apoptosis, metabolism and differentiation was specified by the specific agent values in each module. As lineage-specific
TFs in the differentiation module served as a molecular identity of each cell type, the 13 stable states were divided into six groups according to their differen-
tiation module status.
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their durably self-renewal capacity, resistance of cell death
and anaerobic metabolism for energy supplement (Kohli and
Passegué, 2014; Weissman, 2000). The emergence andmain-
tenance of HSCs required the activation of a series of spe-
cific TFs, illustrated by GATA2 (Grass et al., 2006). In this
context, the module status of HSCs was described as cell
cycle “on”, apoptosis “off”, anaerobic metabolism and the
highly expressed GATA2 without other lineage-specific TFs
expressed in its differentiation module. Similarly, the four
specialized cell types at early committed stage, including neu-
trophils, monocytes, erythrocytes and megakaryocyte, were
characterized at modular level (Table 2A).
When comparing the model results with the experimen-

tal observations at the modular level, we found that the
differentiation module status of the five groups of stable
states (G1−G5) captured the molecular identities of HSCs,
neutrophils, monocytes, erythrocytes and megakaryocytes
respectively (Tables 1 and 2A, Supplementary 3.2 in Sup-
porting Information). We further dissected the stable states
in each group according to their module status of cell cycle,
apoptosis and metabolism. The results showed that stable
states N2, N4, N6, N8, and N10 had good agreements
with the functional status of HSCs, neutrophils, monocytes,
erythrocytes and megakaryocytes respectively. Stable state
N1 described the proliferating stem-like cells with immune
responses (details in Supplementary 3.2 in Supporting Infor-
mation), which were usually observed in some physiological
process such as inflammation or carcinogenesis (Coussens
and Werb, 2002). Stable state N3 described the quiescent
stem cells. Stable state N5, N7, N9, and N11 described the
apoptotic states of neutrophils, monocytes, erythrocytes, and

megakaryocytes respectively. Besides, we found two robust
stable states with highly expressed GATA-2, C/EBPs, Gfi-1
in group 6, which may represent other myeloid cell fates
(Iwasaki et al., 2006).
Furthermore, we validated the preliminary conclusions at

the molecular level. Firstly, we compared the agent values
of stable states N2, N4, N6, N8, and N10, which described
the functional status of HSCs, neutrophils, monocytes ery-
throcytes and megakaryocytes respectively, with the human
gene expression data of these five cell types in a published
dataset (Novershtern et al., 2011). The agreements between
model results and the experimental data were more than
60% (Figure 3A, Models and methods). Considering the
conservation of the core endogenous network, we further
compared the model results with a hematopoietic expression
dataset collected from mice (Chambers et al., 2007), which
also showed good agreements (Figure 3B). It should be
emphasized that the robust states were obtained by com-
puting the core endogenous network that was constructed
from independent gene regulation and signal transduction
knowledge. These emerging patterns of robust states were an
unanticipated consequence of the endogenous network dy-
namics, rather than an input to it. Given the limited accuracy
of experimental measurements and the simplification in our
network construction, the results suggested good agreements
between model results and expression data.
Briefly, five robust stable states (N2, N4, N6, N8, N10) of

the endogenous network corresponded to the functional status
of HSCs, neutrophils, monocytes, erythrocytes, megakary-
ocytes at both modular and molecular level. The results indi-
cated that the robust stable states of the core endogenous net-

Table 2        Validation of core endogenous network at the modular levela)

A. Experimental knowledge

Cell types HSC Neutrophils Monocytes Erythrocytes Megakaryocytes

Cell cycle On Off Off Off Off

Apoptosis Off Off Off Off Off

Metabolism Anaerobic Aerobic Aerobic Aerobic Aerobic

Differentiation GATA2
C/EBPα
PU.1
Gfi-1

PU.1
C/EBPα
Egr/Nab

GATA1
EKLF

GATA1
Fli-1

B. Model results

Stable state N2 N4 N6 N8 N10

Cell cycle On Off Off Off Off

Apoptosis Off Off Off Off Off

Metabolism Anaerobic Aerobic Aerobic Aerobic Aerobic

Differentiation GATA2 C/EBPs
Gfi-1

PU.1
C/EBPs
Egr/Nab

GATA1
EKLF

GATA1
Fli-1

a) A, The functional status of HSCs and four specialized cell types at early committed stage, including neutrophils, monocytes, erythrocytes and megakary-
ocytes, was summarized from the well-documented observations in the literature (Kohli and Passegue, 2014; Kondo et al., 2003; Rosenbauer and Tenen, 2007).
B, The module status of stable states N2, N4, N6, N8, and N10 was obtained from the model. The results showed that stable states N2, N4, N6, N8, and N10
have good matches with the functional status of HSCs, neutrophils, monocytes, erythrocytes and megakaryocytes at the modular level.
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Figure 3         The biological meanings of robust states generated from the core endogenous network were validated at the molecular level. A, We selected the
expression data of HSCs, neutrophils, monocytes, erythrocyte and megakaryocytes, in a published dataset collected from human tissue and set a threshold to
find out the high or low expressed status of each gene (Novershtern et al., 2011). On the other hand, agent values of stable states N2, N4, N6, N8, and N10 in
the model results, which represent the functional status of the five cell types were approximated to activated/inactivated status (represented by 1/0, discussed
above). The mean agreements between the model results and experimental data of HSCs, neutrophils, monocytes, erythrocytes, and megakaryocytes are 63%,
60%, 64%, 72%, and 60%, respectively. B, We selected the relevant expression data in a published dataset collected from mice (Chambers et al., 2007) and
set a threshold to find out the high or low expressed status of each gene. On the other hand, agent values of stable states N2, N4, N6, and N8, which represent
the functional status of the five cell types, HSCs, neutrophils, monocytes, and erythrocytes, are shown in the left. The mean agreements between the model
results and experimental data of HSCs, neutrophils, monocytes, erythrocytes, and megakaryocytes are 61%, 69%, 72%, and 62%, respectively. C, In order
to validate the biological meanings of unstable states U3 and U6, we selected the expression data of GMPs and MEPs collected from human tissue, and set a
threshold to find out the high or low expressed status of each gene (Novershtern et al., 2011). Agent values of unstable states U3 and U6, which represent the
functional status of the GMPs and MEPs, respectively, are shown in this heat-map. Compared with this experimental data, the mean agreements between the
agent values of unstable states U3 and U6 in the model results and expression data of GMPs and MEPs were 71% and 75%, respectively. Red color denotes the
activated/highly-expressed agents, while blue color denotes the inactivated/low-expressed agents.

work described different cell-fates in myeloid development.

Transition    states    reproduced    the    core    features    of cell
intermediates

Since the correspondences between robust stable states and
distinct cell-fates have been built, further questions naturally
arouse: how to interpret the existence of the cell intermedi-
ates in the myeloid development? These cell intermediates
are quite different from stable cell types in the following three
biological aspects (Kondo et al., 2003). Firstly, stem cells will
experience a series of intermediate stage before finally devel-
oping into specialized cell types. Secondly, cell intermedi-
ates are sensitive to extrinsic or intrinsic fluctuations. Upon
fluctuations, these cell intermediates can develop into cer-
tain cell types. Thirdly, cell intermediates are characterized
by their differentiation potential towards specific set of cell
types. Mathematically, dynamical system implies the exis-
tence of their theoretical counter-parts, called unstable states
(Arnold and Levi, 1988). Firstly, it is more probable to pass
through certain unstable state when a system transiting from
one stable state to another. Secondly, compared with stable
states, unstable states are more sensitive to small perturba-
tions. Upon specific perturbations, the system would leave
the initial state and evolve to certain stable states. Thirdly, an
unstable state connects a specific set of stable states. These
similar properties between cell intermediates and unstable
states suggested that these structurally robust unstable states
of the core endogenous network may have biological mean-
ings as cell intermediates.
Biologically, the functional status of GMPs and MEPs,

which occurred in myeloid development, was summarized
according to the accumulated experimental observations.
GMPs and MEPs were generally characterized by the low
self-renewal ability, resistance of cell death and aerobic
metabolism to supply energy (Kohli and Passegué, 2014;
Kondo et al., 2003). The specifically expressed TFs in GMPs
and MEPs were summarized as their differentiation module
status (Figure S1 in Supporting Information) (Laslo et al.,
2006; Starck et al., 2003). In this context, the functional
status of GMPs and MEPs were described as cell cycle “off”,
apoptosis “off”, aerobic metabolism and the co-expressed

TFs as their molecular identities (Table 3).
Mathematically, 42 robust unstable states were obtained in

the ODE dynamical system (Tables S17−S20 in Supporting
Information). Similarly, the biological meanings of the 42
unstable states were discussed at the modular level (Supple-
mentary 4 in Supporting Information). As the lineage-spe-
cific TFs served as the molecular identities of specific cell
types, these 42 roust unstable states were divided into 10 sub-
classes (C1−C10) based on their differentiation module sta-
tus (Tables S22−S30 in Supporting Information). We found
that two unstable states, U1 in C1 and U6 in C2, have per-
fect matches with GMP and MEP respectively at the modular
level (Table 3). Furthermore, we validated this conclusion
at molecular level, by comparing the agent values of U1 and
U6 with the expression data of GMPs and MEPs in a human
expression profiling dataset (Novershtern et al., 2011). The
agreements between model results and the experimental data
were more than 70% (Figure 3C), which suggested that un-
stable states U1 and U6 corresponded to GMPs and MEPs at
the molecular level. Besides the two robust unstable states
discussed above, yet another 40 robust unstable states were
found in the model (Tables S22−S30, Supplementary 4.2 in
Supporting Information).
Briefly, the robust unstable states U1 and U6 of the core

endogenous network corresponded to GMP andMEP respec-
tively at both modular and molecular level. These two cases
validated the assumption that the structurally robust unstable
states of the endogenous network described the cell interme-
diates in early myeloid development.

Interconnection    among    robust    states    indicated       the   
developmental routes

We have shown that the robust stable states of the endogenous
network represent the specific myeloid cell-fates and the un-
stable states represent the cell intermediates. Mathematically,
an unstable state connects a specific set of stable states. It
is interesting to find out whether the interconnections among
these states also have some biological meanings.
We designed an algorithm to get the trajectories from each

unstable state to its connected stable states (Models andmeth-
ods).  As  discussed  above,  we found two unstable states U1
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Table 3        Validation of unstable states U1 and U6a)

Experimental knowledge Model results
Cell type/unstable state GMP MEP U1 U6

Cell cycle Off Off Off Off
Apoptosis Off Off Off Off
Metabolism Aerobic Aerobic Aerobic Aerobic

Differentiation

C/EBPα
PU.1

Egr/Nab (antagonist
with Gfi-1)

Gfi-1 (antagonist with
Egr/Nab)

GATA1
EKLF(antagonist with Fli-1)
Fli-1(antagonist with EKLF)

PU.1
C/EBPs
Egr/Nabint
Gfi-1int

GATA-1
EKLFint
Fli-1int

Differentiation potential/
Stable states connected

Granulocyte(neutrophils)
Monocytes

Erythrocytes
Megakaryocyte

N4 (Neutrophils)
N6 (Monocytes)

N8 (Erythrocytes)
N10 (Megakaryocyte)

a) The functional status and differentiation potential of GMPs and MEPs were summarized from well-documented observations in experiment (Kohli and
Passegué, 2014; Kondo et al., 2003; Starck et al., 2003). On the other hand, the module status of unstable states U1, U6 and the stable states connected by them
were obtained from the model results. The comparison between model results and experiment observations shows that unstable states U1 and U6 have perfect
correspondence with GMPs and MEPs in terms of both module status and differentiation potential. The subscribed “int” denoted the agent with intermediate
values.

and U6 corresponded to GMP and MEP at both modular and
molecular level. According to the perturbation simulation re-
sults, we found that U1 connected the stable state N4 and
N6 representing neutrophils and monocytes, while U6 con-
nected the stable state N8 and N10 representing erythrocytes
and megakaryocyte respectively. The results perfectly agreed
with the known experimental facts about the differentiation
potential of GMPs and MEPs (Akashi et al., 2000). In other
words, the results suggested that the interconnections among
these robust states revealed the developmental routes, which
enabled the organization of certain cell-fates into a quantita-
tive dynamical framework to understand the myeloid devel-
opment.

The landscape as a quantitative scheme to understand
early myeloid development

According to the model results, a specific landscape model
was obtained as a quantitative scheme to understand the early
myeloid development, where structurally robust states cor-
respond to cell phenotypes and their interconnections reveal
developmental routes (Figure 4). It not only explained the
known experimental observations coherently, but also pro-
vided a series of new predictions, which are testable by fur-
ther experiments.
First of all, the landscape reproduces the standard roadmap

model straightforwardly. The stepwise fate-restriction is il-
lustrated as the process that a system (or a cell) overcomes the
barrier and gets to a hyper-transition state from certain stem-
like states, then rolls down and successively passes through
certain unstable states of lower ranks before finally reaching
to the specialized cell states (Figure 5A and B). The pertur-
bation results suggest that the hyper-transition states tend to
connect more stable states than the transition states (Tables
S58−S63 in Supporting Information). Therefore, the grad-
ual cell-fate restriction can be illustrated by reduce of stable

states connected by the unstable states along the route. In ad-
dition, themolecular dynamics along the developmental route
can be predicted from themodel results. The endogenous net-
work reproduced the successive dynamical events in the stan-
dard model, including the loss of self-renewal capacity, the
multi-lineage priming events, and the gradual lineage specifi-
cation, which perfectly agreed with known facts (Figure 5C).
Secondly, the varying observations of developmental

routes are expected, as the landscape suggests multiple
trajectories to adopt when transiting from one stable state to
another (Figure S2A). Themyeloid bypassmodel (Yamamoto
et al., 2013) are explained straightforwardly in the present
landscape (Figure 6A and B). The megakaryocytic-biased
model (Sanjuan-Pla et al., 2013; Shin et al., 2014), which
served as the counterpart of LMPP model (Adolfsson et al.,
2005), has also been reproduced in the present quantitative
scheme (Figure 6C and D). We further predicted more than
one route to achieve the megakaryocytic-biased development
(Table S31 in Supporting Information). On the other hand,
as the transition between stable states is inter-converted, the
observations of cell-fate inter-conversions can be explained
straightforwardly in the landscape (Figure S2B in Support-
ing Information). In specific, we explained the myeloid
trans-differentiation under specific gene manipulation from
the state transition dynamics of the endogenous network
(Table 4). We further predicted the molecular dynamics
along these trans-differentiation events in experiment (Figure
7). In principle, varying observations of hematopoietic
development can be integrated into a single landscape.
More importantly, the quantitative model shows prediction

capacity for cell states and developmental routes, which may
have not been noted in experiment before. We found 55 struc-
turally robust states in total, including 13 stable states and 42
unstable states, which were determined by network topology.
Here, we will discuss two specific predictions  based on  the
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Figure 4         The quantitative developmental scheme generated from the emerging properties of the core endogenous network. These properties illustrated above
were computed from the core endogenous network dynamics. The big circles represent the robust stable states, which described different myeloid cell-fates.
Among them, pink circles represent the proliferative states with cell cycle “on”, apoptosis “off”. Blue circles represent the quiescent states with cell cycle
“off”, apoptosis “off”. Grey circles represent the apoptotic states with apoptosis “on”. Forty-two robust unstable states are denoted by small green circles:
light-green circles represent the transition states (of rank 1); medium-green circles represent the hyper-transition states of rank 2; dark-green circles represent
the hyper-transition states of rank 3. According to their differentiation module status, these states were classified into different classes, which were gathered
into grey shadows. The relative location among states is denoted by arrows: the interconnections from each unstable state to its connected stable states are
denoted by black arrows; trajectories that started from a hyper-transition state and successfully pass through other unstable states of lower ranks are denoted by
red arrows. Upon specific induction or noise, the system can transit from one stable state to another, by successively passing through a set of unstable states.

Table 4        The simulation of cell-fate transitiona)

Original cell types Manipulation Resulting cell type Reference Molecular dynamics

Erythroid Inducible PU.1 *expr. Monocyte (Yamada et al., 1998) Figure 6A

MEP Inducible PU.1 *expr. Myloid cells (Nerlov and Graf, 1998) Figure 6B

GMP Constant GATA1 *expr. MEP (Kulessa et al., 1995) Figure 6C

Eosinophil Constant GATA1 *expr. MEP (Nerlov et al., 2000) Figure 6D

a) *expr., expression.

robust transition states (of rank 1) in the quantitative model.

Prediction 1: Non-sequential transitions
We found that a set of transition states (U14, U16, U17,
U19, U20, U21, U23, U24, U25) directly connected two
stable states representing stem cells and the specialized cell
types (Figure 8A, Table S31 in Supporting Information).
The differentiation module status of these transition states
corresponded to the molecular identities of the relevant
specialized cell types. For example, transition state U19
connected the stable state N3 and N8, which represented
the quiescent stem cells and the erythrocytes respectively.

The differentiation module status of U19 corresponded to
the molecular identity of erythrocytes (Laslo et al., 2006;
Starck et al., 2003). Accordingly, we predicted the existence
of a series of cell intermediates, which not only possess the
stem-cell-like potential, but also have strong lineage-bias
towards specialized cell types. The developmental routes,
tentatively named as non-sequential transitions, were there-
fore predicted, through which the stem cells may skip some
common intermediate states and directly committed into
certain cell fates (Figure 8B).
Encouragingly, after we obtained the predictions, a series

of studies based on single cell analysis were  published  and
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Figure 5         The standard roadmap ofmyeloid development was explained in the present model. A, The standard hematopoietic roadmap has beenwell established
from the experimental observations, which highlight the stepwise and hierarchical manner of hematopoietic development. B, The stepwise fate-restriction in the
standard roadmap can be illustrated as the process that a system (or a cell) overcomes the barrier and reaches a hyper-transition state from certain stem-like state,
then rolls down and successfully passes through a series of unstable states of lower ranks before finally reaching to the specialized cell state. The differentiation
potential of specific cell intermediate is described by the stable states connected by the corresponding unstable state along the route. The system in a stable
state can overcome the barrier and transit to certain unstable states, upon specific induction or noise (illustrated by the green dashed line). C, The quantitative
model further predicted the molecular dynamics along the standard roadmap: a cell in the proliferating stem-like state (N2) will lose its proliferating ability and
reach the quiescent stem-like state (N3). Then the cell will overcome the barrier and reach a hyper-transition state (U34), where multiple lineage-specific TFs
will simultaneously express at a low level. This dynamical event has already been observed biologically, namely the multi-lineage priming events (Hu et al.,
1997). After that, the cell will go through a gradual cell-fate restriction by passing through a bi-potent state (U6), and finally reach a stable state representing
megakaryocyte. The predicted dynamics have a good match with the known knowledge about the standard development. To further validate the prediction, we
compare the model results with the expression data (Novershtern et al., 2011), which showed a good agreement (69%).

Figure 6         The endogenous network dynamics incorporated the seemingly conflicted roadmap models. The myeloid bypass model (A) in which HSCs directly
give rise to myeloid-specific progenitors can be incorporated in the landscape model (B). The megakaryocytic-biased model (C) in which HSCs directly give
rise to megakaryocyte-specific progenitors can be incorporated in the landscape model (D). We further predicted three independent routes to achieve megakary-
ocytic-biased development.
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Figure 7         The molecular dynamics during the cell-fate transition events. We simulated the cell-fate transition events upon specific gene manipulation. The
state transitions in the endogenous network reproduced the cell-fate transition observations (Table 4). We further predicted the molecular dynamics during the
cell-fate transition events, which showed strong nonlinear behaviors. The vertical axe indicates the activity or expression level of each agent. The horizontal axe
indicates the time steps in the model. Red color denotes the activated/highly-expressed agents, while blue color denotes the inactivated/low-expressed agents.

Figure 8         Non-sequential transitions and cross-branch transitions predicted from model. A, Non-sequential transitions: a set of transition states directly con-
nected two stable states representing stem cells and the specialized cell types, whose differentiation module status showed the same status with their connected
specialized cell type. The lineage-committed progenitors were predicted accordingly, through which the stem cell could transit directly into these special-
ized cell types without passing through several common progenitors. B, The non-sequential transitions were predicted to coexist with the stepwise routes. C,
Cross-branch transitions: a set of transition states directly connected two stable states representing specialized cell types in distinct branches. The green dashed
line illustrates the possible process that a cell in a stable state overcame the barrier and got to the cross-branch transition state upon specific induction. D, The
cross-branch routes towards “developmentally distant” cell types were predicted accordingly, which provided additional insights towards the non-hierarchical
and flexible feature of myeloid development. The double-side arrow indicates that the transitions between different cell-fates were inter-converted.

revised the stepwise model into a roadmap with cell-fate
commitment at early stage (Haas et al., 2015; Notta et al.,
2016; Paul et al., 2015; Perié et al., 2015). Among them,
the analysis of single cell transcriptional profiling data il-
lustrated the early transcriptional priming towards different
cell fates within the early myeloid progenitors, which can be

clustered into several subgroups according to their enriched
lineage-specific markers and TFs (Paul et al., 2015). We
compared the single cell gene expression data (cluster C2,
C8, C15, and C9 presenting erythrocyte, megakaryocyte,
monocytes and neutrophil markers and TFs in their transcrip-
tome respectively), with the agent values of the predicted
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transition states in our model (U21, U24, U17, U14). The
single cell transcriptional data and model prediction showed
good agreements (Figure 9). The single cell transcriptional
data independently validated the model prediction results.
Our model results also back up these experimental efforts
from mechanistic point of view. We further predicted the
inner heterogeneity among these lineage-biased progenitors,
which is testable by future experiments.

Prediction 2: Cross-branch transitions
We found another set of transition states (U39, U40, U41,
U42), which directly connected two stable states representing
specialized cell types in different branches (Figure 8C, Table
S32 in Supporting Information). For example, the transition
states U42 connected stable states N4 and N8, which rep-
resented neutrophil and megakaryocyte respectively. These
transition states indicated the existence of the common bi-po-
tent progenitors between these “developmentally distant” cell
types. Accordingly, the cross-branch routes towards these
cell types were predicted, which highlighted the non-hier-
archical and flexible features of hematopoietic development
(Figure 8D).
To our knowledge, the predicted cross-branch transitions

have not been noted experimentally. Nevertheless, the trans-
differentiation between the “long-distant” cell types without
passing through the common progenitors was extensively ob-
served upon specific genemanipulation (Graf, 2011; Ladewig
et al., 2013). These events served as indirect proofs for the ex-
istence of cross-branch transitions. Further experimental ef-
forts are needed to test the predictions by identifying the cell
intermediates with differentiation potential towards distinct
branches, and the existence of cross-branch developmental
routes.

DISCUSSION

The heterogeneity within the classically defined early
myeloid progenitors and cell-fate inter-conversion events
challenged the roadmap model, which has become difficult
to follow up the increasing discoveries with continuous
refinement. In this work, we established an integrated quan-
titative framework of early myeloid development, which
not only explained the known experimental observations
from the mechanistic point of view, but also provided a
series of predictions testable by future experimental ef-
forts. We constructed a core endogenous network of early
myeloid cell-fate determination by integrating the molecular
interactions independently from accumulated mechanistic
knowledge. Structurally robust fixed points of the core
endogenous network were obtained, in which agent values
were not obvious before analysis in such a high-dimensional
and nonlinear dynamical system. Although many details
have been simplified in the core endogenous network at the

first stage, these robust fixed points have already been able
to reproduce the main features of different cell states of
the early myeloid development. Further analysis revealed
the interconnections among these stable states and unsta-
ble states, which enabled a natural organization of certain
cell-fates into a landscape. To our knowledge, the present
landscape model served as a first quantitative scheme that (i)
explained the cell phenotypes and standard scheme of early
myeloid development from mechanistic point of view; (ii) is
capable of explaining the seemingly conflicting observations,
including the varying developmental routes and the cell-fate
inter-conversion events; (iii) predicted a complex pool of cell
intermediates and developmental routes that can be further
tested in experiment. Overall, the quantitative scheme sug-
gested a more complex picture of myeloid development than
previous thought and challenged the linear and hierarchical
view of development. The quantitative scheme is open to
further expansion to explain and predict more features of
hematopoiesis and contribute to further regulatory strategies
of hematopoiesis.
The present landscape based on a core endogenous network

was compared with the other paralleled work as follows.

Endogenous network and gene regulatory networks
(GRNs)

The endogenous network was constructed to capture the core
molecular mechanism of the early myeloid cell-fate deter-
mination process. In the meantime, the bioinformatics ob-
tained Gene Regulatory Networks (GRNs) also have been
constructed with similar aims (Klein et al., 2015; Klimmeck
et al., 2014; Novershtern et al., 2011). The differences be-
tween the core endogenous network and these bioinformatics
obtained GRNswere discussed in the following three aspects.
Firstly, the endogenous network was constructed by sum-
marizing the well-documented molecular biological and bio-
chemical experiments, whereas the construction of the bioin-
formatics obtained GRNs was based on statistical analysis
of the high through-put data. The reliability of GRNs were
limited by both quality and quantity of the available high
through-put data (Brenner, 2010). Secondly, the core endoge-
nous network was formed as a causal network, which can be
further quantitatively realized as a non-linear dynamical sys-
tem (Li et al., 2015; Wang et al., 2014a; Wang et al., 2013;
Zhu et al., 2015). As contrast, the majority of the data-driven
GRNs was currently correlative and networks. Thirdly, the
endogenous network incorporated both the gene regulations
and signaling transduction in the biological systems. Over-
all, both of these approaches investigated the genotype-phe-
notype mapping from distinct directions: the backward ap-
proach identifies molecular interaction networks on the basis
of correlated molecular behavior, while the forward approach
examines the mechanisms through which functional proper-
ties arise in the interactions of known components. The com-
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Figure 9         The validation of model prediction 1 from the single cell tran-
scriptional data. Endogenous network suggested that a series of transition
states with strong lineage bias in their differentiation module existed in
the early myeloid development, which connected stem-like states and
specialized cell states directly. Recent single cell transcriptome profiling
also illustrated the heterogeneity in early myeloid progenitors, which can
be divided into several clusters according to the enriched lineage-defining
markers and TFs (Paul et al., 2015). We compared the gene expression
of the cluster C2, C8, C15, and C9 with our model prediction (U21, U24,
U17, U14), which presented erythrocyte, megakaryocyte, monocytes and
neutrophil identities. The agreements between expression data and model
predictions are 69.2%, 59.0%, 74.4% and 69.2% respectively. Red color
denotes the activated/highly-expressed agents, while blue color denotes the
inactivated/low-expressed agents.

mon goal of these two different approaches is “middle-out”,
to get better understanding of the organization principles un-
derpinning these complex phenomena. The combination of
these two approaches has a promising future that will bring
biology to the next systematic level.
Other networks which introduced the documented knowl-

edge into the network construction process have also
been proposed to study the molecular mechanisms of the
hematopoietic systems (Kueh and Rothenberg, 2012; Naldi
et al., 2010). Differences between the endogenous network
and these networks were discussed as follows. First of all,
the universal existence and significance of feedback regula-
tion in the biological system were noted in the construction
of endogenous network, which formed an autonomous sys-
tem. Whereas the organization of many networks based on
documented knowledge, such as networks in KEGG, were
of input-output type. Secondly, the endogenous network
incorporated four functional-independent modules including
cell cycle, apoptosis, metabolism and differentiation. The
cross-talk regulation between cell proliferation, cell death,
metabolism and differentiation provided a holistic under-
standing towards the molecular mechanisms of the blood
homeostasis maintenance.

Comprehensive understanding towards cell-fate determi-
nation process

The concept of landscape, which was proposed decades ago
(Waddington, 1942; Waddington, 2014), served as a powerful
tool to quantitatively and metaphorically describe the com-
plex biological system (Ao, 2009). The genetic and epige-
netic effects upon phenotype transitions have been discussed
widely (Lei et al., 2014; Li et al., 2016; Wang et al., 2014b).
Stable state has been used to represent distinct cell type pre-
viously (Ao et al., 2008; Huang et al., 2009). Both cells and
cell intermediates were all recognized as stable states and the
hematopoietic development has been envisaged as a rough
road by passing through a series of basins (Enver et al., 2009).
In the present work we found that the robust stable states

of a specific network described certain myeloid cell-fates. We
proposed and validated that structurally robust unstable states
represented cell intermediates. Two unstable states U1 and
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U6 corresponded to GMP and MEP respectively in terms of
their module status, gene expression patterns and differenti-
ation potential. The dynamical properties of these unstable
states provided insights towards the special characteristics of
the cell intermediates, which would help for elucidating the
regulation strategies of progenitors. Further, the sensitivity
of unstable states also provides possible interpretation of the
recent evidences from murine in situ tracking experiments,
showing that progenitors, rather than the HSCs, are the main
drivers of steady-state hematopoiesis during most of adult-
hood (Busch et al., 2015; Sun et al., 2014). The endogenous
network dynamics can guide for directional manipulation of
specific cell-fates and contribute to a better understanding of
normal blood differentiation programs, which is critical to re-
veal the diseases genesis in blood system and further benefit
the medical advances.

MODELS AND METHODS

Endogenous network construction

The main approach of constructing the core endogenous net-
work of early myeloid cell-fate determination is described as
follows. As it is difficult to depict every detail at the first
stage due to the complexity of biological systems, we focus
on describing the conserved regulatory structure and the core
features of earlymyeloid development, instead of trying to in-
corporate all of the accumulated regulations. The details are
noted in Supplementary Part 1 in Supporting Information.
Firstly, four essential modules, including cell cycle, metab-

olism, apoptosis and differentiation, were selected to capture
the main features of the early myeloid development.
Secondly, eachmodulewas simplified by a set of key agents

to capture the core functional status according to the accu-
mulated molecular knowledge (Alberts et al., 2008) (Tables
S1 and S2 in Supporting Information). In this work, we
chose a set of essential proteins to depict their core regula-
tory structures, since proteins are the main executors of bi-
ological function. Taking cell cycle as an example, the two
gap phases (G1 and G2 phase) of cell cycle provide time for
a cell to monitor the internal and external environment to en-
sure that conditions are suitable before the cell commits it-
self to divide (Hartwell and Kastan, 1994; Massagué, 2004).
Among them, G1 phase is especially important in this re-
spect. Therefore, the key regulators of the restriction point
(R point) in G1 phase, including Cyclin D-CDK4/6 complex,
Cyclin E-CDK2, pRb, E2Fs, and p21 were selected to rep-
resent the core regulatory mechanisms of cell cycle. In this
way, we approximate the cell cycle as bi-stability and mainly
focus on describing the ‘on’ and ‘off’ status of cell cycle in
the coarse-grained quantitative framework. The simplicity of
cell cycle has already been applied in the previous quantita-
tive work (Chen et al., 2000; Qu et al., 2003). These selected

agents were characterized by their evolutionary conservation.
Thirdly, the construction of endogenous network empha-

sized the significance of the feed-back loops in biological sys-
tem, which led to an autonomous system.

Quantitative analysis of the endogenous network

The core endogenous network was quantified and analyzed
by using a set of ordinary differential equations (ODEs) and
Boolean dynamics respectively.

ODE dynamics
The core endogenous network was firstly described by a set
of ODEs (Ao et al., 2010; Glass and Kauffman, 1973). The
sigmoid-shaped Hill functions, which have been commonly
used to model transcriptional regulations and signaling trans-
ductions (Huang and Ferrell, 1996; von Dassow et al., 2000),
were adopted in this quantitative framework to describe the
activation/inhibition among agents. Two independent algo-
rithms were designed to find the structurally robust states in
these dynamical systems. The details are stated in Supple-
mentary Part 2.1 in Supporting Information.

Boolean dynamics
In Boolean network, the expression of each agent was approx-
imated by only two states: active and inactive (represented by
1/0). The values were updated in discrete time step. The state
changes of an individual agent were specified by the Boolean
rules f, which were transformed from the network structure
by using Boolean logic functions: AND, OR, and NOT. The
algorithm was designed to calculate the stable states of the
Boolean dynamical system. The details are stated in Supple-
mentary Part 2.2 in Supporting Information.

State interconnection analysis

The algorithm was designed to get the trajectories from each
unstable state to its relevant stable states. We perturbed the
system with small random vectors when it stayed at a certain
unstable state. We obtained the trajectories from each unsta-
ble state to the connected stable states. We recorded stable
states connected by each unstable state and the evolving tra-
jectories (Tables S18−S21 in Supporting Information). The
details can be seen in Supplementary 2.3 in Supporting Infor-
mation.

Significance of multi-stability of endogenous network dy-
namics

This test assesses the statistical significance of the multi-sta-
ble states generated from the core endogenous network versus
what would be expected by chance. We defined Qstable as the
number of stable states that can be generated in a single net-
work. Our null hypothesis is that the multi-stable states are
expected if 177 activated/inhibited interactions among the 45
agents were assigned at random. To test this hypothesis, we
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generated more than 10,000 randomized networks, in which
the number of agents and interactions is fixed. We quantified
the networks by using Boolean analysis and computed the
number of stable states Qstable in each randomized network.
We compared the resulting distribution with the number of
stable states generated by the endogenous network. For the
endogenous network, we found the Qstable=13, whereas for all
the randomized network we found Qstable=0.9389±1.5162. In
a one-tailed test, the P value can be computed as the prob-
ability of observing 13 or more stable states generated from
a randomized network (P<10−3). Assuming the number of
stable states comply with normal distribution, we further use
student’s t test to calculate the P value for the number of sta-
ble states (Pstable<10−14).

Module analysis of the structurally robust states

The status of cell cycle, apoptosis, metabolism and differ-
entiation was specified by the agent values in each module.
Accordingly, the biological meanings of each state were dis-
cussed. Upon the differentiation module status, the robust
states were classified into different groups or subclasses. The
details are elaborated in Supplementary Part 3 in Supporting
Information.

Comparison with gene profiling data

We validated the model results at the expression level by
taking advantage of two independent published datasets col-
lected from humans and mice respectively (Chambers et al.,
2007; Novershtern et al., 2011). We set a threshold to find out
the “On” or “Off” status of each gene and compared the data
with the corresponding states in the model results, where the
agent values can be approximated to activated or inactivated
(shown as 1/0). The details can be seen in Supplementary
Part 5 in Supporting Information. The data sets validating the
model results are available on http://ncbi.nlm.nih.gov/geo/,
GSE24759, and GSE6506.
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