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Learning noise-induced transitions by multi-
scaling reservoir computing

Zequn Lin 1,2,3,4,6, Zhaofan Lu2,6, Zengru Di 2 & Ying Tang 1,2,5

Noise is usually regarded as adversarial to extracting effective dynamics from
time series, such that conventional approaches usually aim at learning
dynamics by mitigating the noisy effect. However, noise can have a functional
role in driving transitions between stable states underlying many stochastic
dynamics. We find that leveraging a machine learning model, reservoir com-
puting, can learn noise-induced transitions. We propose a concise training
protocol with a focus on a pivotal hyperparameter controlling the time scale.
The approach is widely applicable, including a bistable systemwithwhite noise
or colored noise, where it generates accurate statistics of transition time for
white noise and specific transition time for colored noise. Instead, the con-
ventional approaches such as SINDy and the recurrent neural network do not
faithfully capture stochastic transitions even for the case of white noise. The
present approach is also aware of asymmetry of the bistable potential, rota-
tional dynamics causedbynon-detailedbalance, and transitions inmulti-stable
systems. For the experimental data of protein folding, it learns statistics of
transition time between folded states, enabling us to characterize transition
dynamics from a small dataset. The results portend the exploration of
extending the prevailing approaches in learning dynamics from noisy time
series.

Noise-induced transitions are ubiquitous in nature andoccur in diverse
systems with multi-stable states1. Examples include switches between
different voltage and current states in the circuit2, noisy genetic
switches3, noise-induced biological homochirality of early life self-
replicators4, protein conformational transitions5,6, and chemical
reactions7 with the multi-stable probability distribution8. Learning
noise-induced transitions is vital for understanding the critical phe-
nomena of these systems. In many scenarios, only time series are
available without mathematical equations known in prior. To effec-
tively learn and predict noise-induced transitions from time series, it is
necessary to distinguish both slow and fast time scales: fast relaxation
arounddistinct stable states and slow transitions between them,where

the fast time-scale signals are often referred to noise9,10. Consequently,
it remains elusive to learn stochastic transitions from time series in
general.

Recently, many efforts have been made to learn the dynamics
from data by machine-learning methods11–20. One type of approach
uses Sparse Identification of Nonlinear Dynamics (SINDy) for identi-
fying nonlinear dynamics, denoising time-series data, and para-
meterizing the noisy probability distribution from data21,22. Due to the
nonconvexity of the optimization problem, the method may struggle
to robustly handle large function libraries for the regression. Another
type of approach employs physics-informed neural networks for data-
driven solutions anddiscoveries of partial differential equations23–25, or
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Koopman eigenfunctions from data26. However, the method requires
an extensive quantity of data to train the deep neural network and
refinements of the network.

Despite the broad application of the aforementionedmethods, to
our knowledge, they have not been utilized in studying noise-induced
transitions. To learn noise-induced transitions, we first utilize the
SINDy22 and recurrent neural network (RNN)27 for data with noise. We
find that SINDy and RNN do not faithfully predict stochastic transi-
tions, even for a one-dimensional bistable system with Gaussian white
noise. We also apply the filters28,29 to the data, obtain the smoothed
time series, and then deal with the filtered data by SINDy21. Still, this
method does not accurately capture noise-induced transitions. Simi-
larly, the method of First-Order, Reduced, and Controlled Error
(FORCE) learning30, including its various versions of full-FORCEand the
spiking neuronmodel31, does not fully capture stochastic transitions in
the experimental data and requires relatively high computational cost.
These attempts indicate that these conventionalmethods weremainly
designed for denoising the noisy data to learn the deterministic
dynamics, rather than capturing the noise-induced phenomena. We
thus need to develop a new approach to predict stochastic transitions.

We notice that one machine-learning architecture, reservoir
computing (RC)11,17, may be suitable for this task. The training of
reservoir computing only needs linear regression, which is less com-
putationally expensive than the neural network that requires back-
propagation. Reservoir computing was found effective for learning
dynamical systems12,32,33, including chaotic systems34–38. A recent
research started to apply reservoir computing to stochastic
resonance39, however, the functional role of noise in shifting dynamics
between stable states has not been investigated. Another attempt
employed RC for noise-induced transitions40 but relied on an imprac-
tical assumption of knowing the deterministic dynamics equation
beforehand. In practice, prior knowledge of deterministic dynamics is
often lacking and sometimes even cannot be directly described by an
equation6. Thus, can we forecast noise-induced transitions solely
based on data without any prior knowledge of the underlying
equation?

In this study, we develop a framework of multi-scaling reservoir
computing for learning noise-induced transitions in a model-free
manner. The present method is inspired by that the hyperparameter α
in the reservoir was found to determine the time scale of reservoir
dynamics41. Given a multi-scale time series, we can thus tune the
hyperparameter α to match the slowly time-scale dynamics. After the
reservoir captures the slowly time-scale dynamics by fitting the output
layer matrix, we can separate the fast time-scale series as a noise dis-
tribution. During the predicting phase, we utilize the trained reservoir
computer to simulate the slowly time-scale dynamics, and then add
back the noise sampled from the separated noise distribution (for
white noise) or learnt from the second reservoir (for colored noise).
The whole protocol is iterated overtime points as the rolling predic-
tion. Notably, the present method is different fromprevious work that
regards noise merely as a disturbance22,42, and instead focuses on
capturing noise-induced transitions from the data.

To demonstrate the effectiveness of the present method, we
apply it to two categories of scenarios. One type has the data gener-
ated from stochastic differential equations (SDE) for the purpose of
testing the method, and the other has the experimental data6. For the
first category with white noise, it includes a one-dimensional (1D)
bistable gradient system, two-dimensional (2D) bistable gradient and
non-gradient systems43, 1D and 2D gradient systems with a tilted
potential, a 2D tilted non-gradient system, and a 2D tristable system44.
The present approach can capture statistics of the transition time and
the number of transitions. For the first category with colored noise, we
study a 1D bistable gradient system with Lorenz noise (Lorenz-63
model and Lorenz-96 model40), and accurately predict the specific
transition time, without the assumption of knowing the deterministic

part of dynamics as required in40. For the second category, we apply
the approach to the protein folding data6, and explore the least
amount of required data for accurate training, which can help reduce
the demand for extensive measurements in experiments.

Results
The problem and conventional approaches
To study noise-induced transitions, we consider two types of data: one
type is generated from SDE and the other type is experimental data.
First, we use data generated from SDE. The continuous-state and
continuous-time Markovian stochastic dynamics can be given as

_u= f ðuÞ+ σξðtÞ, ð1Þ

where the vector _u is the time derivative, the deterministic part of the
dynamics is f(u), and σ corresponds to the noise strength. The ξ(t) is a
k-dimensional Gaussian white noise with hξðtÞi =0,hξðtÞξ>ðt0Þi =
δðt � t0ÞIk , where ⊤ denotes the transpose, Ik is the k-dimensional
identity matrix, δðt � t0Þ is the Dirac δ function, and 〈 ⋯ 〉 represents
the average.

Recent methods for learning dynamical models from time series
have not directly handled the stochastic transitions (Supplementary
Fig. 1). We apply the methods related to our work for the example
below. First, we utilize two types of SINDy, SINDy-202122 and SINDy-
201621,45 (Supplementary Fig. 2, Supplementary Table 1). The SINDy-
2021 can learn the dynamics from data with noise and separate the
noise distribution. However, it does not faithfully find stable states or
predict stochastic transitions, while requiring high computational cost
(Supplementary Table 2). The SINDy-2016 also does not capture the
stochastic transitions from data with noise. The second method is
RNN27,46, which still does not accurately predict the stochastic transi-
tions (Supplementary Fig. 3). Besides, the SINDy-2016 is not designed
for data with noise. We thus preprocess the data by filters (Kalman
filter28 and Savizky-Golay filter29). However, SINDy-2016 still does not
predict the noise-induced transitions for the filtered data (Supple-
mentary Fig. 4, Supplementary Table 3). Moreover, we find that the
FORCE learning method31 can capture transitions in the bistable sys-
tem with white noise (Supplementary Figs. 5, 6), but requires higher
computational cost. It also does not faithfully learn stochastic transi-
tions from the experimental data (Supplementary Figs. 7, 8).

The framework of multi-scaling reservoir computing
Given that previous approaches are not applicable to noise-induced
transitions,we leverage reservoir computing to learn the transitions. In
reservoir computing12,34, the input layer of the reservoir transforms
time series into the reservoir network, while the output layer trans-
forms the variables of the reservoir back to time series. The output
layer is trained to minimize the difference between the input
and output, with tuning the hyperparameters. It has the following
scheme:

rt + 1 = ð1� αÞrt +α tanhðArt +WinutÞ, ð2Þ

~ut + 1 =Woutrt + 1: ð3Þ

Here, the vector u is an n-dimensional state vector, and the initial
condition is u0 with the lower script denoting the time, the Win is the
input matrix with the values uniformly sampled in �Kin,Kin

� �
, the r is

the N-dimensional reservoir state vector, the A is the adjacencymatrix
of an Erdõs-Rényi network with average degree D to describe the
reservoir connection between N nodes, and the ρ is the spectral radius
ofA. The tanh represents our activation function for this study. The ~u is
the output vector and Wout is the output matrix. The α is the leak
hyperparameter, representing the time scale41, which becomes clearer
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when we rewrite Eq. (2) in its continuous-time form:

1
α
_r= � r+ tanhðAr+WinuÞ: ð4Þ

In the training phase, only Wout is trained to minimize the differ-
ence between the output time series and the training data47. With the
regularization term, the loss function is given by

L=
XT
t = 1

jjut �Woutrt jj2 + βjjWout jj2, ð5Þ

where β is the regression hyperparameter. We then regress the matrix
Wout by minimizing the loss function (Methods). By stacking the vec-
tors of different time points as a vector: U ≐ [u1, …, uT] and
R ≐ [r1, …, rT] with t = 1, …, T, it can be rewritten as a compact form:

Wout = ðUR>Þ � ðRR> +βÞ�1
: ð6Þ

Determining Wout is a simple linear regression, which is less compu-
tationally expensive than the neural network that requires the back
propagation.

The framework for learning noise-induced transitions usingmulti-
scaling reservoir computing is summarized in Fig. 1. A reservoir
acquires a time series u that contains signals with both fast and slow
time scales. Given that α characterizes the time scale of reservoir
computer41, we search for an appropriate value of α to capture the slow
time scale initially. After identifying an appropriate α value, additional

searches are conducted to find suitable values for other hyperpara-
meters. This process aims to improve the accuracy of the results and
obtain the trained slow-scale model. We utilize the trained slow-scale
model to separate the noise distribution from the original time series.
Then, we sample noise from the separated distribution and employ the
trained slow-scale model for rolling prediction.

We use trial and error to search for appropriate hyperparameters47.
In detail, the first strategy employs the information of stable states in the
training set, which can be inferred by segmenting the time series
between large jumps and calculating themean value of each segment6. If
reservoir computing effectively captures the slowly time-scale dynam-
ics, the generated trajectories from various initial points (e.g., ten cho-
sen points) should converge to the corresponding stable state. To
achieve that, we tune the hyperparameter α and then refine the
remaining hyperparameters. In the case of nonconvergence, the
hyperparameter is adjusted in the opposite direction. When the hyper-
parameter adjustments do not further improve the convergence, we
turn to the next hyperparameter47. The second strategy does not rely on
prior information of stable states, where the hyperparameters are
searched by evaluating the power spectral density (PSD). The accuracy
of learning deterministic dynamics is quantified by the match of PSDs
between the predicted time series and the training data (Supplementary
Fig. 9). Thus, the match between the PSDs serves another indicator on
the proper choice of hyperparameters.

After finding the appropriate hyperparameters, we utilize the
trained slow-scale model to separate the noise distribution. Within the
training phase, at time step t, the reservoir accepts the input ut,
resulting in an output ~ut + 1. Then, the noise at time step t + 1 can be

a

b

c

Fig. 1 | Framework of learning noise-induced transitions by multi-scaling
reservoir computing. a The training data is a time series uwith slow and fast time
scales, and the fast time-scale part can be considered as noise, causing noise-
induced transitions between stable states. In the training phase, at each time step t,
the reservoir takes into ut through a matrix Win and has a reservoir state rt with a
connection matrix A. The output matrixWout is trained to fit the output time series
to the training data at the next time point. Tuning the hyperparameter α alters the
time scale of the output eu, and a properly chosenα leads to amatchwith the slowly

time-scale data. Then, u� eu separates the fast time-scale signal η as a noise dis-
tribution. b In the predicting phase, the bus is put into the trained reservoir to
generate eus + 1. In the next time step s+ 1, the input bus + 1 is the eus + 1 plus the noiseηs+1

sampled from the separated noise distribution. This process is iterated as a rolling
prediction56 to generate the time series bu. c The evaluation on the predicted
transition statistics. In the middle, different colored lines of bu represent replicates
of the predictions. The accuracy is evaluated by the statistics of transition time and
the number of transitions. PDF: probability density function.

Article https://doi.org/10.1038/s41467-024-50905-w

Nature Communications |         (2024) 15:6584 3



computed as

ηt + 1 =ut + 1 � ~ut + 1: ð7Þ

We thenobtain the noisy timeseries and the distribution asdepicted in
Fig. 1a. We can continue to implement the rolling prediction (Fig. 1b).
In thepredictingphase, at time step s, the reservoir accepts bus , yielding
theoutput ~us + 1. By addingηs+1, sampled from the noise distribution, to
the output ~us + 1 as

bus + 1 = ~us + 1 +ηs + 1, ð8Þ

the bus + 1 is used as the input for the time step s + 1. The vector bu is the
prediction.

As illustrated in Fig. 1c, to validate that the present method
accurately captures noise-induced transitions, we compare the pre-
diction with the test data. For white noise that is memoryless, we
quantify the accuracy of the prediction by the statistics of noise-
induced transitions. Instead of predicting a single transition, we focus
on learning the statistics of transition time and the number of transi-
tions from a set of trajectories. For colored noise, we aim to accurately
forecast the occurrence of a specific noise-induced transition.

Wenext proceedwith two categories of examples.One category is
data generated from stochastic differential equations, including a 1D
bistable gradient system and a 2D bistable non-gradient system with
white noise, aswell as a 1D bistable gradient systemwith colored noise.
More examples are provided in Supplementary Note: a 1D tilted bis-
table gradient system (Supplementary Fig. 10, Supplementary Table 4),
a 2D bistable gradient system (Supplementary Fig. 11, Supplementary
Table 5), 2D tilted bistable gradient (Supplementary Fig. 12, Supple-
mentary Table 6) and non-gradient (Supplementary Fig. 13, Supple-
mentary Table 6) systems, a 2D tristable system (Supplementary
Fig. 14, Supplementary Table 7), and a 1D bistable system with high-
dimensional colored noise (Supplementary Fig. 15, Supplementary
Table 8). The second category focuses on experimental data, wherewe
apply the present method to protein folding data6. We also assess the

performance of using a small part of the dataset (Supplemen-
tary Fig. 16).

Examples
A bistable gradient system with white noise. As a first example, we
consider a 1D bistable gradient system with white noise9:

_u1 = � bð�u1 +u
3
1 + cÞ+

ffiffiffiffiffiffiffiffi
2εb

p
ξ1ðtÞ, t ≥0: ð9Þ

The ξ1(t) is a Gaussian white noise. The parameter b denotes the
strength of the diffusion coefficient, ε is the noise strength, and c
controls the tilt of the two potential wells. The system has noise-
induced transitions between the two potential wells as illustrated in
Fig. 2a. We generated a time series lasting 20000δt, with the training
set t ∈ [0, 100] and the predicting set t ∈ [100, 200]. Figure 2b shows
the first 3000δt of the training set.

In the training phase, the tuning of hyperparameters for the slow-
scale model is performed as the protocol in our framework. After
finding the proper hyperparameters listed in Table 1 (Example 1), we
obtain the trained slow-scale model and the separated noise distribu-
tion (Fig. 2c). We remark that the convergence speed of the captured
deterministic dynamics may have discrepancies compared with the
actual dynamics. As a result, the separated noise distribution may
exhibit lower or higher intensity compared with the actual noise dis-
tribution. In this case, we can employ a factor tomagnify or reduce the
noise strength. For instance, we amplify the sampled noise by a factor
of 1.1 here, which improves the accuracy of the predictions (Supple-
mentary Fig. 17).

In the evaluation, we conduct rolling prediction as shown in Fig. 1.
The first 3000δt of the prediction is illustrated in Fig. 2d. The predic-
tion has similar noise-induced transition dynamics to the test data.
Next, we generate 100 replicates of time series from Eq. (9), train the
model, and produce 100 time series separately. We then compare the
statistics of the noise-induced transitions for these two sets of time
series, e.g., the number of transitions over 10000δt (Fig. 2e) and the
transition time (Fig. 2f). The match between the test and predicted

Fig. 2 | Capturing stochastic transitions in a bistable gradient system with
white noise. a Schematic of noise-induced transitions in the bistable gradient
system with Gaussian white noise. b Generated time series from Eq. (9)
(b = 5, c = 0, ε = 0.3, u1(0) = 1.5, δt = 0.01) with t = 30 as the ground truth. c The
trained slow-scale model transforms ten different start points into ten different
slowly time-scale series (color lines), and the noise distribution is separated. d The

prediction for t∈ [100, 130]. e The number of transitions for the test and predicted
data matches. Transition refers to the shift from u1 = − 1 to u1 = 1 or vice versa. The
duration of the prediction is 10000δt. f Histograms of transition time for the test
and predicted data. Transition time refers to the interval between two consecutive
transitions.
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data demonstrates the effectiveness of our approach in capturing
noise-induced transition dynamics.

A bistable gradient system with colored noise. The prediction on a
single stochastic transition becomes possible when the system has
colored noise. We need to learn the time evolution of the separated
noise. Since RC is good at learning deterministic system, we employ a
second RC (the first RC for the deterministic part) to learn the noise
series for predicting a single transition. To demonstrate that the pre-
sentmethod is applicable to such cases, we consider a system Eqs. (10)
to (13) studied in ref. 40, where their method relies on the assumption
of knowing the deterministic part of the equation in prior. In contrast,
we do not assume any prior knowledge of the deterministic part of the
dynamical system and directly learn both the deterministic part and
noise (Fig. 3a), enabling prediction in a model-free manner.

The system is a 1D bistable gradient system, as illustrated in
Fig. 3b:

_u1 = � bð�u1 +u
3
1 + cÞ+

ψ
ϵ
y, ð10Þ

_x =
10
ϵ2

ðy� xÞ, ð11Þ

_y=
1
ϵ2

ð28x � xz � yÞ, ð12Þ

_z =
1
ϵ2

xy� 8
3
z

� �
: ð13Þ

The parameter b denotes the strength of the diffusion coefficient, ϵ
corresponds to thenoise strength,ψ controls the influenceof thenoise
on the slow-scale dynamics, and c controls the tilt of the two potential
wells. The noise (x, y, z) is modeled by the Lorenz-63 model48. The
system has stochastic transitions between the two potential wells
under the Lorenz noise.

To test the present method, we consider the time series with a
stochastic transition prior to the green dashed line in Fig. 3b. In the
training phase, we obtain a slow-scale model to learn the deterministic
part (Fig. 3c) and to separate noise. The hyperparameters are listed in
Table 1 (Example 2 set 1). In the predicting phase, accurately fore-
casting the stochastic transitions requires predicting the noisy time
series. Thus, we utilize a second reservoir (Fig. 3a) to learn the pre-
viously separated noise during the training phase. The hyperpara-
meters for the noisy time series are listed in Table 1 (Example 2 set 2).
With the deterministic component slow-scale model, we execute a
rolling prediction to predict a single transition.

Fig. 3 | Predicting the accurate transition time for a bistable gradient system
with colored noise. The system is the same as Eq. (10)40. a The flowchart of pre-
dicting stochastic transitions with colored noise. The process for obtaining noise ζt
follows that in Fig. 1a, and a second reservoir takes into ζt through matrixW *

in and
has reservoir states r*t with a connection matrix A*. The output matrix W *

out is
trained to learn noise. b Target time series (x(0) = y(0) = z(0) = 1, b = 1, c = 0,
ψ = 0.08, ϵ = 0.5, u1(0) = − 1.5, δt = 0.01) with 8000δt, where a noise-induced
transition occurs in t ∈ [22, 25] marked by the green dashed line. The noisy data

from 580δt (with a range of 550δt to 650δt empirically suitable) before the sto-
chastic transition at t = 22 is applied to predict the noisy time series in t ∈ [22, 25].
c The trained slow-scale model transforms ten different start points into ten dif-
ferent slowly time-scale series (color lines).d By repeating the process in awith the
samehyperparameters, 50predicted u1(t) are obtained (fainter lines). The averaged
predicted time series (thick green)matches the test data (coral). eAbsolute error of
the predicted 50 time series and its mean value (thick green).

Table 1 | The list of hyperparameters used for the different examples of the main text

Model δt Ttrain (Time steps) Tpredict (Time steps) N Kin D ρ α β

Example 1 0.01 10000 10000 800 4 4 1.2 × 10−3 0.2 1 × 10−8

Example 2 set 1 0.01 8000 8000 1000 1.5 3.2 1.3 × 10−3 0.25 1 × 10−7

Example 2 set 2 0.01 580 300 800 0.996 0.996 0.806 0.065 1 × 10−7

Example 3 0.002 20000 20000 1200 1 2.2 1.7 × 10−3 0.3 1 × 10−7

Example 4 real data 25000 100000 800 0.04 1.8 0.021 0.22 1 × 10−6
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To evaluate the accuracy of the prediction, we applied the same
hyperparameters to conduct 50 predictions as in ref. 40. These pre-
dictions were then used alongside trained slow-scale model for 50
times rolling prediction. The average of the 50 predictions outcomes
closely approximates the actual time series (Fig. 3d). Furthermore,
Fig. 3e shows a near-zero average absolute error between the 50 pre-
dictions and the actual time series, indicating high accuracy. These
results demonstrate that the present approach requires no assump-
tions about knowing the deterministic part, underscoring its potential
in predicting a single stochastic transition under colored noise.

A bistable non-gradient system. We next focus on investigating
whether the present method can predict noise-induced transitions in
2D non-gradient systems. We consider a bistable non-gradient
system43:

_u1 = � bð�u1 +u
3
1 + cÞ � au2 +

ffiffiffiffiffiffiffiffiffiffi
2ε1b

q
ξ1ðtÞ, t ≥0, ð14Þ

_u2 =að�u1 +u
3
1 + cÞ � bu2 +

ffiffiffiffiffiffiffiffiffiffi
2ε2b

q
ξ2ðtÞ, t ≥0, ð15Þ

with Gaussian white noise ξ1(t) and ξ2(t). In this system, b is the diffu-
sion coefficient, a represents the strength of the non-detailed balance
part, ε1 and ε2 are the noise strengths, and c controls the tilt of the
potential. The system has noise-induced transitions between the two
potentialwells under thenoise, as illustrated in Fig. 4a. Thepresenceof
a non-detailed balance introduces a rotational component to the time
series, which complicates the prediction.

In the training phase, we generated a series consisting of
40000δt. The training set is t ∈ [0, 40], and the predicting set is
t ∈ [40, 80]. Figure 4b displays the training set. Following the method
in our framework, the deterministic part is reconstructed as shown in
Fig. 4c. A proper set of hyperparameters is listed in Table 1 (Example 3).
We observe that the generated time series starting from the ten initial
points converge to two potential wells, where the time series has

rotational dynamics. In the predicting phase, we perform rolling pre-
diction within t ∈ [40, 80] (Fig. 4d).

In the evaluation, we predict 100 replicates of the time series, and
compare them with 100 replicates simulated from Eqs. (14) and (15).
Figure 4e presents histograms of the number of transitions for the 100
predicted and test time series, in t ∈ [40, 80]. Figure 4f presents his-
tograms of transition time for the 100predicted and test time series, in
t ∈ [40, 80]. The results demonstrate that, for the 2D bistable non-
gradient system, the present method accurately learns the dynamics
and yields precise estimations on the number of transitions and
transition time.

Experimental data of protein folding. We apply the present method
to the protein folding data6, demonstrating that it can learn the noise-
induced transitions of experimental data. The talin protein has five
regions with distinct states, and two states (native and unfolded) can
be singledout in a short time (native folding dynamics). A short end-to-
end length represents the native state, while a longer length represents
the unfolded state. This shift of end-to-end length can be considered a
noise-induced transition. Figure 5a shows the training data, where
transitions occur between two stable states.

In the training phase, with the training set length (Ttrain) of 25000
time steps, we obtain the trained slow-scale model and ten different
slowly time-scale series with the separated noise distribution (Fig. 5b).
The proper hyperparameters are listed in Table 1 (Example 4). In the
predicting phase, we employ the trained slow-scale model and the
separated noise distribution to do rolling prediction for 100,000 time
steps. The first 25000 time steps of prediction are plotted in Fig. 5c,
showing the transitions between stable states and the asymmetric
dynamics.

In experiments, the available data is often limited, and it is
essential to determine the minimum amount of data required. Thus,
we reduce the amount of training data to 7500 and 6000 time steps
separately. We generate a prediction for 100,000 time steps and then
compare it with the test data to evaluate the impact of data length on

Fig. 4 | Learning noise-induced transitions in a bistable non-gradient system.
a Schematic of transitions in the 2Dbistable non-gradient system.bGenerated time
series from Eqs. (14) and (15) (a = b = 5, c = 0, ε1 = ε2 = 0.3, u1(0) = 0, u2(0) = 2, δt =
0.002) with t = 40 as the ground truth. c The trained slow-scale model transforms
ten different start points into ten different slowly time-scale series (color lines),
t∈ [40, 80], and the noise distribution is separated in the training phase.dResult of

prediction using the slow-scalemodel and the noise distribution in c. eThe number
of transitions for the 100 replicates simulated in t∈ [40, 80] and that from the 100
predicted trajectories matches. f Histograms of transition time for the test and
predicted data. The transition occurswhen the time series crosses the zero point in
the u1-direction without returning for 50δt. The transition time is defined as the
interval between two consecutive zero crossings.
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prediction accuracy. The results in Fig. 5d, e and f, g demonstrate that
the presentmethod can learn the dynamics of protein folding from the
data with around 7500 time steps. Figure 5h, i show a larger error
between the predicted and true transition time when Ttrain is equal to
6000 time steps. This suggests that 7500-time steps approximate the
minimum data requirement for the present method in this system,
allowing the behavior of protein folding to be effectively learned and
simulated for more time steps. Additionally, when compared with
SINDy-2021 and FORCE learning, our method has higher accuracy
(Supplementary Fig. 8). Therefore, the present approach is helpful for
streamlining the workload of experimentalists by learning protein
folding dynamics from a small dataset.

Discussion
The choice of hyperparameter α affects the training: the larger α cor-
responds to the time series with fast time scale, while the smaller α
leads to slow time scale41. We utilize this characteristic to search for α
to match the slow dynamics and separate noise. If a time series is
generated from a system with asymmetric potential wells, the two
distinct potential wells exhibit different time scales. In this case, we
may need to employ two different sets of hyperparameters (Supple-
mentary Figs. 10, 12, 13), where our approach can identify the two-time
scales. For colored noise (Example 2),α for the noisy RC is smaller than

that for the deterministic part (Table 1), because using a smallerα leads
to a smoother noisy time series and better captures themajor trend of
colored noise.

The effectiveness of learning slowly time-scale series can also be
influencedbyother hyperparameters47. Although it is challenging to have
a universal and systematic strategy for selecting hyperparameters49, we
have proposed a general method to search for the optimal hyperpara-
meters. We find that the power spectral density of the time series can be
used to quantify the training performance (Supplementary Fig. 9). The
PSD of the predicted stochastic time series closely matches that of the
training data when deterministic dynamics are accurately captured.
Therefore, a closer match of PSDs indicates a better choice of the
hyperparameters. Moreover, we change the values of hyperparameters
(Supplementary Figs. 18, 19). The RC is still effective when α∈ [0.15, 0.25]
and the regularization parameter β is not too small. It demonstrates that
the method is robust under a range of parameter values.

For experimental data, we have shown the possibility of accurate
predictions from a small dataset, as exemplified for the protein folding
data6. During a short time span, the data samples a local equilibrium
involving the native and unfolded conformations. If the measurement
time is significantly extended, previously inaccessible regions sepa-
rated by high-energy barriersmay be explored. Consequently, in order
to capture a wider variety of protein folding transitions, it may be

Fig. 5 | Learning the stochastic transitions from the experimental data of
protein folding.The u1 represents the end-to-end length of the protein.We refer to
transitions from around u1 = 15 to around u1 = 30 as upward transitions, and vice
versa asdownward transitions. The right-pointing arrow: reductionof training data.
a Time series of the training set (0 − 25000 time steps). b The trained slow-scale
model generates slowly time-scale series (color lines), and the noise distribution is
separated out. c The prediction during time steps 25000−50,000. d, e Histograms

of upwardanddownward transition time for theprediction and the test data,where
the length of the training set (Ttrain) is 25,000 time steps. Transition time refers to
the interval between two consecutive transitions. f–i Similar histograms of upward
and downward transition time with different lengths of the training sets,
Ttrain = 7500 for (f, g), and Ttrain = 6000 for (h, i). The present method can still be
accurate even when the training length is reduced to Ttrain = 7500.
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necessary to use a longer training set, which needs higher computa-
tional cost. Additionally, weobserved tilted dynamics in the time series
of protein folding. Even so, we can learn both the upward and down-
ward transitions by using only one set of hyperparameters. This sug-
gests that the time scales of upward and downward transitions might
not differ significantly.Whendealingwith a time series generated from
very tilted dynamics, we can employ two distinct sets of
hyperparameters.

The present method is found effective for various cases of the
frequency distributions of the data (Supplementary Fig. 20). For
Example 1, the frequency distribution has almost equal intensity over a
long range of frequencies due to the white noise. Differently, in
Example 2 with colored noise, the frequency distributions of deter-
ministic and noisy signals are mixed with their indistinguishable fre-
quency distributions. To further test the effectiveness of our approach
in such cases, we apply it to another case with mixed frequency dis-
tributions, where the precise transition time is also accurately pre-
dicted. Besides, for the real data of protein folding, the frequency
distribution is similar to Example 1, which helps us to better grasp the
data characteristics. In general, the frequency distribution of the data
can help guide the training, including the choice of the
hyperparameters.

In summary, we have provided a general framework for learning
noise-induced transitions solely based on data. We have applied the
method to examples from stochastic differential equations and
experimental data, where the method can accurately learn transition
statistics from a small training set. As potential ways of improvements,
the Bayesian optimization50 and simulated annealing51 can be used to
help the search for the hyperparameters. The present approach may
be applied to analyze transitions of trajectories between different
dynamical phases of spins52. The approach can also be generalized to
the exampleswith hiddennodes andhidden links53, orwith other types
of noise, where the conditional generative adversarial network54 may
be employed to model the noise. We anticipate that this study can
motivate a series of systematic explorations on learning noise-induced
phenomena beyondmitigating noisy effect in extracting deterministic
dynamics, such as by extending the frameworks of SINDy and FORCE
learning.

Methods
We first describe the previous training process of reservoir computing.
We reformulate the loss function to derive the expression for the
output matrix Wout and discuss the hyperparameters in the present
method. The loss function is given as Eq. (5). In detail, we should write
the loss function as a sum from all the parameters to do linear
regression. Then, the regression becomes simply a sum of vectors:

L=
XT
t = 1

½jjut �Woutrt jj2 +βjjWout jj2�

=
XT
t = 1

½ðut �WoutrtÞ>ðut �WoutrtÞ +βjjWout jj2�

=
XT
t = 1

½ðutÞ>ut � ðWoutrtÞ>ut � ðutÞ>Woutrt + ðWoutrtÞ>Woutrt +βjjWout jj2�:

ð16Þ

As the loss function is convex (to prove that the zero gradient is indeed
the local minimum, one needs to differentiate oncemore to obtain the
Hessian matrix and show that it is positive definite; this is provided by
the Gauss-Markov theorem), the optimum solution lies at the zero
gradient by

∂Wout
L=

XT
t = 1

½�2ðrtÞ>ut + 2ðrtÞ>Woutrt +2βWout �=0, ð17Þ

which leads to the regression:

Wout =
XT
t = 1

ðutÞ � ðrtÞ>
� � � ½ðrtÞ � ðrtÞ> +β��1

, ð18Þ

where we have neglected the notation of the identity matrix and the
identify vector. By stacking the vectors of different time points as a
vector, it can be rewritten as a compact form Eq. (6). Here, the present
method further adjustsWout by tuning hyperparameters to capture the
deterministic dynamics and separate noise distribution, thereby
enabling us to learn stochastic dynamics.

There are six hyperparameters in the present method. The vari-
able N represents the number of reservoir nodes, which determines
the reservoir size. In most cases, performance improves with larger
reservoir55. However, using large reservoir might lead to overfitting,
requiring the application of suitable regularization techniques47. The
hyperparameter Kin represents the scaling factor for the input matrix
Win. The average degree of the reservoir connection network is
denoted by D, and we choose the connection matrix A to be sparse11.
This approach stems from the intuition that decoupling the state
variables can result in a richer encoding of the input signal55. The
spectral radius of the reservoir connection network, denoted as ρ,
represents a critical characteristic of the dynamics of the reservoir
state. Notably, it affects both the nonlinearity of the reservoir and its
capacity to encode past inputs in its state42,55. The α is the leak para-
meter, which determines the time scale41. The hyperparameter β
represents the regularization term47.

Data availability
The authors declare that the data supporting this study are available
within the paper.

Code availability
A pytorch implementation of the present algorithm can be found in
the GitHub repository (https://github.com/Machine-learning-and-
complex-systems/NIT-RC).
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