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Abstract. This research provides a examination of transitions within the
various-state Potts model in two-dimensional finite-size lattices. Leveraging the
Wang–Landau sampling and parallel tempering, we systematically obtain the
density of states, facilitating a comprehensive comparative analysis of the results.
The determination of the third-order transitions location are achieved through a
meticulous examination of the density of states using microcanonical inflection-
point analysis. The remarkable alignment between canonical and microcanonical
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results for higher-order transition locations affirms the universality of these trans-
itions. Our results further illustrate the universality of the robust and microca-
nonical inflection-point analysis of Wang–Landau sampling.

Keywords: Potts model, third-order transitions, Wang–Landau sampling,
parallel tempering, microcanonical inflection-point analysis
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1. Introduction

Traditional statistical physics and thermodynamics has achieved great success in
explaining the thermodynamic behavior of macroscopic systems. Phase transitions are
cooperative phenomena associated with many factors such as temperature and pressure.
The structure and physical properties of the system will change as certain parameters
(primarily temperature) change continuously [1]. The study of phase transitions have
a long history. Most prior research had focused on phase transitions in macroscopic
systems, meaning that the size of systems was infinitely large, for example, the exact
solution of the two-dimensional Ising model [2], Landau’s theory of phase transitions
[3], and Wilson’s Renormalization group theory [4]. However, in reality, systems are not
always infinitely large [5]. Many systems in nature and synthetic materials are of finite
scale, such as nanomaterials [6], living systems, social systems, and complex systems
[7], among others. The scale and microstructure of these small systems have significant
impacts on the thermodynamic and dynamic behaviors, so that the phase transitions
of the small systems exhibit different behaviors from those of the infinite systems [8].
Traditional phase transitions discuss the singularity of thermodynamic quantities, which
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are absent in finite systems [9]. As a consequence, a different definition for phase trans-
itions in finite systems is demanded.

The microcanonical analysis has been employed for the identification of phase trans-
itions in the past few decades [10, 11]. Recently the microcanonical inflection-point ana-
lysis (MIPA) has emerged as a powerful tool for studying phase transitions in finite-size
systems. It has been further generalized by Qi and Bachmann [12] to identify higher-
order transitions, among which independent and dependent transitions can be distin-
guished. The inflection point of the higher-order derivative of microcanonical entropy,
being the least sensitive, accurately marks the precise location where the monoton-
icity of the corresponding function changes. Independent transition resemble traditional
phase transitions and occur independently of other collaborative activities within the
system. In contrast, dependent transition rely on the occurrence of lower-order phase
transitions. These transitions manifest at higher energy levels and are of a higher-order
than the independent transitions they accompany. Using the exact density of states
(DOS) of the Ising model [13], Sitarachu studied the 1D and 2D finite-size Ising model
in detail [14], where higher-order transitions were identified in the 2D system. They
also found that the physical significance of the third-order dependent transition is the
location where the size of the group condenses the fastest, and is a precursor to the
critical phase transition. Additionally, MIPA has been successfully applied to studies of
nanomaterials, flexible polymers, and the Baxter–Wu model [14–18]. The outcomes of
these studies elucidate major transitions and further detail the transformation process
by indicating higher-order transitions. Moreover, it has proven effective in accurately
identifying phase transition energies, characterizing phase transitions of various orders
[19], and is also applicable in discerning different structural phases and constructing
suitable parametric hyperphase diagrams [20].

The Potts model, originally proposed by Potts in 1952 [21], is an extension of the
Ising model [22] and incorporates more than two states. Historically overlooked, this
model has gained increasing attention over the last decade due to its rich structure
and relevance to numerous fundamental issues in statistical physics. The Potts model is
notably linked with significant challenges in lattice statistics, and its critical behavior
has proven to be richer and more encompassing than that of the Ising model. As a vital
platform for testing various methods and approaches, the Potts model has significantly
contributed to theoretical research [23, 24], and has many applications in complex net-
works, such as community structure [25], protein folding networks [26], and networks
connecting music groups and audiences [27]. It is also widely used in the social sciences
[28], cellular biology [29], computational biology [30], and image processing [31].

Given that the Potts model lacks a precisely defined the DOS, it is necessary to
obtain the DOS through simulation. Wang–Landau sampling (WL) [32] and parallel
tempering (PT) [33] are two Monte Carlo methods widely utilized in statistical physics,
each offering unique advantages and limitations. WL efficiently generates the DOS map
by dynamically adjusting the sampling probability, facilitating the rapid calculation
of thermodynamic properties across various temperatures. This method is particularly
effective for sampling complex energy landscapes but can suffer from difficult-to-control
convergence, sensitivity to parameter selection, and complexity in implementation. In
contrast, PT addresses the challenge of local minima by exchanging configurations
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between multiple temperature layers, making it well-suited for systems characterized
by multiple energy minima, such as Spin Glass Simulations [34] and protein folding
[33]. While inherently suited for parallel computing, this method demands significant
computational resources, and the selection of parameters, such as appropriate temper-
ature intervals, is crucial for its efficiency. Consequently, we employed both WL and PT
methods to determine the DOS of the systems.

In this paper, the DOS of the Potts model is obtained with the WL and PT, and
the position of the higher-order transitions are determined, demonstrating the univer-
sal existence of higher-order transitions. In section 2, we briefly describe the model
and methodology. Section 3 presents and discusses the results, while the final section
summarizes our work.

2. The model and the method

2.1. Potts model

The Hamiltonian built on the N ×N square lattices is as follows,

E =−J
∑
<ij>

δ(σi,σj), (1)

where σi stands for the spin located in the square lattices, and < i,j > denotes the
summations over the nearest neighbor sites. σi can take q discrete values: 0,1, . . . ,q− 1.
If the spins of two neighbors are the same, an interacting potential energy −J is added
to the total potential energy for two identical neighboring spins. Otherwise, no net
contribution occurs. A single spin flip typically leads to a 4J energy difference. There
are two exceptions: the differences between the ground state and the first excited state,
and between the highest energy level and the second-to-last energy level are 8J. As a
result, there are 4N 2+1 energy levels in this model.

2.2. Wang–Landau sampling

We can obtain g(E ) using WL, a sophisticated Monte Carlo method [32]. g(E ) is estim-
ated through a random walk in energy space once the histogram becomes flat. We start
with g(E) = 1 and improve it as follows: the random walk proceeds according to a
specified probability distribution.

p(E1 → E2) = min

(
g (E1)

g (E2)
,1

)
, (2)

where E 1 and E 2 is the energy level before and after spin flipping, the density of states
is updated by

g (E)→ g (E)f , (3)

Where E is the energy level of the accepted state, and f is a modification factor,
with an initial value set to f = f0 = e= 2.718 28. Simultaneously, the energy histogram
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H (E ) is incremented by 1. We proceed with the random walks until the histogram of
energies becomes ‘flat,’ defined as each energy level’s histogram being at least 80% of

the average histogram value. Then, the modification factor is reduced to fi+1 = f
1/2
i , the

histogram is reset to H(E) = 0 for all values of E, and the random walks are restarted.
The simulation terminates when the modification factor falls below ffinal = 1+10−8.

The primary advantage of this method is that it avoids critical slowing down.
However, as the system size and the complexity of the model increase, sampling the full
energy range becomes challenging, resulting in prolonged periods required to achieve
a flat energy histogram [35]. Therefore, Vogel et al proposed replica-exchange Wang
Landau sampling [36, 37], which is ideally suited for studying complex, large systems.
In this method, energy levels are partitioned into overlapping sub-windows across mul-
tiple adjacent windows. In this study, samples are collected from multiple independent
walking sub-windows, with 75% of the overlapping sections being selected. Given the
specified number of Monte Carlo steps, two random walks are chosen for exchange

Pacc =min

[
1,
gi(E({si})gj(E({sj})
gi(E({sj})gj(E({si})

]
. (4)

To calculate a single g(E ) across the entire energy range, we chose the joining point for
any two overlapping densities of states where the microcanonical inverse temperature
β = dlog[g(E)]/dE best coincide. Convergence of g(E ) is accelerated within the smaller
energy range of the sub-window.

2.3. Parallel tempering

To cross-verify the DOS obtained by WL, we calculate the DOS using PT to
ensure accuracy and consistency between different computational methods. The low-
temperature phases of finite-sized lattices and other complex systems typically feature
numerous local minima, each separated by energy barriers. To comprehensively study
these systems, it is essential to analyze each configuration of these local minima and the
associated fluctuations. The PT method is a technique for optimizing complex systems
and sampling intricate probability distributions, particularly for energy functions with
multiple local minima [33, 38]. The PT algorithm operates as follows: (1). Initialization:
create multiple replicas at different temperatures, each representing the system’s state
at a specific temperature. Typically, the temperature sequence ranges from the low-
est temperature (near 0) to the highest temperature (usually near or above the phase
transition point) in a geometric progression. (2). Independent sampling: each chain is
sampled independently according to its temperature using the Metropolis algorithm.(3).
Exchange steps: periodically attempt to exchange states between adjacent temperature
chains. The exchange probability is determined by the Metropolis criterion to ensure
the system’s detailed balance. For two adjacent chains i and j (with i having a lower
temperature), the exchange probability P is given by P =min(1,e(βi−βj)(Ej−Ei)), where
βi = 1/kBTi is the inverse temperature and E is the energy of chain i. (4). Iteration:
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repeat steps (2) and (3) until a predetermined number of iterations or convergence cri-
teria is reached. We use 30 temperature intervals for each size in each state for temper-
ature exchange, ultimately obtaining the energy histogram corresponding to each tem-
perature. The DOS of the system is then derived through the multi-histogram algorithm
[38].

ĝ (E) =

∑I
i=1hi (E)∑I

i=1MiZ
−1
i e−βiE

, (5)

where the partition function is,

Zi =
∑
E

ĝ (E)e−βiE, (6)

where g(E ) is DOS, hi(E) is the number of energy histograms at the ith temperature.
By iteratively applying equations (5) and (6), the DOS of the system can be obtained.

2.4. Microcanonical infection-point analysis method

Qi and Bachmann combined microcanonical analysis with the principle of minimum
sensitivity to identify and classify first- and higher-order transitions in complex systems
[12]. Through this analysis, they discovered that the phase transition signals exhibited
by the two-dimensional ferromagnetic Ising model represent not only simple second-
order phase transitions but also more complex behaviors. Third-order independent and
dependent transitions are also observed in the system. Additionally, they obtained a
phase diagram that illustrates the interaction of the fibrous polymer with the adhesive
surface.

The macroscopic behavior of a physical system is governed by entropy and energy,
while microcanonical entropy, encompassing all information about the phase behavior
of the system, can be defined as follows:

S (E) = kB lng (E) , (7)

where kB is the Boltzmann constant, S (E ) represents entropy and its derivatives are
monotone functions within the energy region associated with a single phase. However,
phase transitions disrupt this monotonicity and introduces an inflection point.

According to the principle of least sensitivity, the least sensitive inflection point
possesses physical significance. For example, if S (E ) has a least-sensitive inflection point,
its first derivative is

β (E) = T−1 (E) =
dS (E)

dE
, (8)

where β(E), representing the microcanonical inverse temperature, should exhibit a pos-
itive minimum. This indicates a first-order phase transition. If β(E) exhibits a least-
sensitive inflection point, its first derivative can be obtained by

γ (E) =
dβ (E)

dE
=

d2S (E)

dE2
, (9)
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where γ(E), describing the rate of change of the microcanonical inverse temperature,
can reveal information about first and second order transitions. Furthermore,

δ (E) =
dγ (E)

dE
=

d3S (E)

dE3
, (10)

where δ(E) represents the third derivative of S (E ) with respect to E, can reveal inform-
ation about third-order transitions. In addition to the class of independent transition,
another category of dependent transition can also be identified by this method.

Derivatives based directly on discrete microcanonical entropy are influenced by the
noise associated with numerical errors in the data. To avoid the noise, we employ a
two-step strategy. The first step is straightforward, we compute DOS 10 times and
then average these calculations to obtain a smoother curve. Next, we utilize the Bézier
algorithm to generate a smooth function [39]. The discrete data points f q at energy
E q , obtained from WL, serve as control points in the derivatives of the microcanonical
entropy.

fbez =

Q∑
q=0

Cq
Q

(
EQ−E

EQ−E0

)Q−q(
E−E0

EQ−E0

)q

fq, (11)

where q and Q represent the current energy level and the highest energy level, respect-
ively, and E 0 is the energy of the ground state. f q denotes variables such as S q , βq ,
γq , or δq . The derivatives required for the statistical analysis are calculated from these
variables, as detailed in this study. We also perform ten independent computations to
determine the error bars. If the error bars are not visible, they are smaller than the
symbols used in the figures.

3. Results

3.1. Traditional transitions

The objective of this study is to determine the order of phase transitions in the finite-
size Potts model for various values of q. We conducted simulations for q = 3,4,6 and 8
across system sizes ranging from N =16 to 56. DOS data were obtained using replica
exchange WL and PT, and the phase transition points were identified through canonical
analysis and MIPA. First, the results comparing WL and PT for the DOS of the Potts
model with N =32 for q =3 are shown in figure 1. The inset in the figure provides an
analysis of the relative errors between WL and PT.

We observe that the results obtained from these two methods are in close agreement,
which provides validation for the accuracy of the data obtained via WL. Next, we used
the DOS obtained by WL for MIPA, and identified the positions of phase transition
points in Potts model of various states. We calculate the specific heat values in the
system using the formula

cV =
<E2 >−<E >2

N 2kBT 2
, (12)
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Figure 1. Microcanonical entropy per spin S (E ) (S(E) = kB lng(E)) and its deriv-
atives (b)β(E), (c)γ(E) and (d)δ(E) for N = 32, q = 3 plotted as functions of
the energy per spin e=E/N 2 obtained by WL and PT. The small picture is the
relative error of the logarithm of the S (E ), β(E), γ(E) and δ(E) are RS , Rβ, Rγ

and Rδ by WL and PT.

where <En >=
∑

EE
ng(E)e−E/kBT . The locations of the transition points are determ-

ined by the peaks in the specific heat. To reaffirm the accuracy of the DOS, we conduct a
finite size analysis of the specific heat to determine the critical exponents α/ν. Figure 2
presents the finite size analysis of the specific heat in the Potts model under different
states. By determining the maximum specific heat, lncV = (α/ν)× lnN can be obtained
according to cV =Nα/ν , thus the slope of the curve represents the critical exponents α/ν
that we need. Therefore, for q =3, the value of the key index α/ν = 0.396, and for q =4,
α/ν = 0.996. In the Potts model reported by [23], the critical exponent α/ν = 0.4 when
q =3, and α/ν = 1 when q =4. Our results closely match the exact solution, and the
DOS derived by WL shows satisfactory agreement. Based on this, the MIPA method,
based on DOS, identifies the position of the third order transitions.

The phase transition points of the Potts model were determined by Baxter using
the transfer matrix method [24], the result is Tc = 1/ln(1+

√
q). Consequently, the

phase transition temperatures for q = 3,4,6 and 8 are Tc(3)≈ 0.995, Tc(4)≈ 0.910,
Tc(6)≈ 0.808 and Tc(8)≈ 0.745 respectively. According to MIPA, the temperature cor-
responding to the energy level at the maximum value of the curve γ(E) in β(E) indicates
the temperature at which a traditional phase transition occurs. The transition temper-
atures under canonical and microcanonical analysis conditions are obtained respectively,
as shown in table 1. The obtained transition temperatures closely approximate the exact
values, which corroborates the accuracy of the DOS and provides a solid foundation for
precisely identifying the locations of third-order transitions. In the table, the first line
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Figure 2. The specific heat in finite size analysis of Potts model under q = 3,4,6
and 8 states from N = 16− 56. It shows the relationship between the logarithm of
the maximum specific heat of different states and the logarithm of dimensions, and
the slope is the critical exponent α/ν.

represents the phase transition temperatures obtained from specific heat, the second line
represents the phase transition temperatures obtained by MIPA, and the energy level
corresponding to the phase transition points are shown in parentheses. The temperature
of the transitions gradually decrease with the increase of q.

Figures 3(a) and (d) give the microcanonical inverse temperature β(E) (which is
also the first derivative of the entropy S (E ) with respect to energy) with the energy
level e. (b), (e) and (c), (f) are γ(E) and δ(E) for the second and third derivative
of the microcanonical entropy with respect to energy, respectively. In figure 3(b), a
negative maximum value is observed on the curve γ(E) for q =4. Combined with the
summary provided in table 2, this observation confirms that the 4-state Potts model
undergoes a second-order transition at finite size. This finding aligns with the established
understanding of second-order phase transitions in Potts model for q < 5. Similarly,
the positive extreme value of γ(E) observed in figure 3(e) indicates that the Potts
model with q =6 undergoes a first-order phase transition in finite-size systems. The
non-monotone backbending trend of β(E) observed in figure 3(d) is also a typical signal
of a first-order phase transition.

3.2. Third order transitions

We locate the third-order transition points using the curve δ(E). Figure 3 illustrates
the MIPA for the q =4 and q =6 states of the Potts model. Figures 3(a)–(c) presents
the results of the MIPA for the Potts model with q =4. According to the conclusions
drawn from the MIPA, identifying the negative maximum and positive minimum values
on the curve δ(E) allows for the determination of the energy levels associated with
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Table 1. Microcanonical analysis and canonical analysis results of different q.

N =16 N =32 N =40 N =48 N =56

1/ln(1+
√
3)≈ 0.995

1/βc 1.013 1.003 1.001 1.000 0.999
q =3 1/βm 1.024 1.006 1.003 1.002 1.000

e=E/N 2 −1.559 −1.552 −1.554 −1.556 −1.558

1/ln(1+
√
4)≈ 0.910

1/βc 0.924 0.916 0.914 0.913 0.913
q =4 1/βm 0.934 0.918 0.916 0.915 0.914

e=E/N 2 −1.465 −1.464 −1.466 −1.477 −1.482

1/ln(1+
√
6)≈ 0.808

1/βc 0.817 0.811 0.810 0.809 0.809
q =6 1/βm 0.824 0.812 0.810 0.809 0.809

e=E/N 2 −1.344 −1.345 −1.348 −1.349 −1.353

1/ln(1+
√
8)≈ 0.745

1/βc 0.752 0.747 0.746 0.746 0.746
q =8 1/βm 0.756 0.746 0.745 0.744 0.744

e=E/N 2 −1.262 −1.255 −1.248 −1.249 −1.250

Table 2. Signal of the order of the transitions.

Categories Even order transitions Odd order transitions

Independent d2kS(E)
dE2k < 0 d2k−1S(E)

dE2k−1 > 0
Negative maximum Positive minimum

Dependent d2kS(E)
dE2k > 0 d2k−1S(E)

dE2k−1 < 0
Positive minimum Negative maximum

third-order transitions. Subsequently, the temperature corresponding to this transition
can be pinpointed on the curve β(E). This method clearly reveals both independent
and dependent transitions, with the respective temperatures detailed in table 3. Table 3
presents the locations of third-order transition points obtained by MIPA.

Figures 3(d)–(f) presents the results of the MIPA for the Potts model with q =6.
Similarly, by employing the previously described method, we have determined the tem-
peratures corresponding to the third-order transitions for the Potts model with q =3,
4, 6, and 8 states. These results are presented in table 3.

In table 3, ‘NF’ denotes that no signal of third-order transitions were detected, but
there could be a fourth-order transitions. The numbers in parentheses represent the
energy levels at which transition points occur. It is notable that the temperature of
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Figure 3. The microcanonical inverse temperature β(E), the first and second deriv-
atives of the microcanonical inverse temperature γ(E) and δ(E); (a)− (c) for the
q =4 state, (d)− (f ) for the q =6 state in Potts model.

the third-order independent transition for the 6-state Potts model closely approxim-
ates that of the dependent transition. This proximity in temperature is attributed to
the fact that the 6-state Potts model undergoes a first-order transition at finite size.
Furthermore, the non-monotonic backbending of the β(E) curve suggests the presence
of latent heat and a prolonged temperature-invariant process in the system. However,
the closely approximated temperatures correspond to distinctly separate energy levels,
indicating that, on a microscopic level, the system occupies two fundamentally different
states.

4. Summary

To summarize, we obtained the DOS of the Potts model using the WL and PT meth-
ods. The DOS for Potts model with various states was subsequently analyzed using the
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Table 3. Locations of the third order transitions for the Potts model.

N =16 N =32 N =40 N =48 N =56

1/βd 1.164 1.079 1.066 1.049 1.050
q =3 e=E/N 2 −1.246 −1.336 −1.354 −1.383 −1.383

1/βin NF NF NF NF NF

1/βd 1.005 0.952 0.940 0.938 0.935
q =4 e=E/N 2 −1.152 −1.249 −1.283 −1.290 −1.302

1/βin NF NF NF NF NF

1/βd NF 0.820 0.814 0.812 0.811
e=E/N 2 NF −1.140 −1.176 −1.201 −1.209

q =6 1/βin NF NF 0.813 0.811 0.811
e=E/N 2 NF NF −1.472 −1.457 −1.448

1/βd NF NF NF NF NF
q =8 1/βin NF NF 0.749 0.749 0.748

e=E/N 2 NF NF −1.378 −1.458 −1.419

MIPA, identifying the positions of transitions of different orders. Comparisons of the
micro-positive inflection points with transition positions determined by specific heat
under canonical conditions showed good agreement. The results confirm that the DOS
obtained from WL is effective for analyzing both first-order and continuous phase trans-
itions and accurately determining the locations of third-order independent and depend-
ent transitions. The presence of higher-order transitions in the Potts model underscores
the universality of these transitions to some extent. Notably, the position of higher-order
dependent transitions is influenced by the lower-order ones, suggesting that higher-order
dependent transitions may act as precursors to critical phase transitions.

MIPA has achieved significant success in addressing third-order transitions in
microcanonical systems. Since third-order dependent transition necessitate the exist-
ence of lower-order phase transitions, they can be considered precursors to critical
phase transitions. In 2022, Sitarachu discovered in a regular system that the third-order
dependent transition of the Ising model corresponds to the point where the system size
changes most rapidly [40]. This signal persists under the thermodynamic limit and is
relatively weak when the system size is small. In recent years, machine learning has
proven effective in addressing phase transitions [41, 42], with variational autoregressive
networks. showing advantages over traditional methods in small systems. Therefore,
our next aim is to use machine learning techniques to identify more precise third-order
dependent transition locations and to determine if better probability distributions can
be achieved to further investigate the physical implications of these transitions. The
universality and physical significance of third-order transitions in various spin systems
are crucial for understanding the evolution and prediction of complex systems.
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