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Anomalous free energy changes induced by topology
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We report that nontrivial topology of a driven Brownian particle restricted on a ring leads to anomalous
behaviors on free energy change. Starting from steady states with identical distribution and current on the ring,

free energy changes are distinct and nonperiodic after the system is driven by the same periodic force protocol.
We demonstrate our observation in examples through both exact solutions and numerical simulations. The free
energy calculated here can be measured in recent experimental systems.
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I. INTRODUCTION

Thermodynamics plays a crucial role in understanding
chemical and biophysical processes [1]. These systems are
usually out of equilibrium with breakdown of detailed balance,
which has intricacy in discussing fundamental thermodynam-
ical quantities inherited from equilibrium case. A typical ex-
ample is a Brownian particle on a ring subject to a conservative
periodic potential and a nonconservative time-dependent force
f(t) [2-5], as shown in Fig. 1. One intriguing property of this
system is the nontrivial topology: the dynamics is invariant
under rotational transformation on the angular variable 6 —
6 + 2, and such topological space allows a persistent current
breaking detailed balance at the steady state. In this paper,
we report that the nontrivial topology leads to anomalous
behaviors on free energy change even for a primitive model
of a realistic experimental system with a Brownian particle
on a ring [3.,4]. Specifically, starting from steady states with
identical distribution and current on the ring, free energy
changes are distinct even when the system is driven by the
same periodic force afterwards. Our observation demonstrates
that these steady states are degenerated when observed on the
ring, and they indeed have different actual distributions, which
can be revealed by considering the particle moving along a
tilted potential. For this potential, giant acceleration of the
effective diffusion has been observed both theoretically [6,7]
and experimentally [3,8,9]. Our present result then uncovers
another anomalous phenomenon on thermodynamics of such
stochastic dynamics with the tilted potential, and free energy
changes calculated here can be measured in real experiments
to distinguish the degenerated steady states.

The stochastic dynamics on a ring serves as a paradigm
to recent studies on fluctuation theorems [2,3,10-12] and
generalized fluctuation-dissipation relations [3,4,13]. The total
entropy production in the fluctuation theorem can be expressed
in terms of work and free energy only when the driven system
is initially at (canonical) equilibrium. Since the canonical
ensemble is absent for the nonequilibrium system on a ring,
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how to quantify free energy change between steady states
corresponding to the work conducted is still unclear. Consider
a straightforward case with flat potential. The particle will
relax to steady states that all have a uniform distribution
on the ring regardless of the varying force f(f) [5]. As a
result, the steady state distribution does not provide infor-
mation on the free energy change. In the following, we will
demonstrate in detail how to extract free energy changes for
such dynamics and then apply our methods to experimentally
realizable examples. Our method extends theoretically the
concept of free energy to nonequilibrium steady states by
an exact and unique definition, which needs to be tested by
experiments.

This paper is organized as follows. In Sec. II we provide
the method to calculate free energy change and discuss briefly
its anomalous behaviors. In Sec. III we use both analytic
calculation and numerical simulation to obtain free energy in
two examples and present the detailed analysis on the behavior
of free energy change. We then discuss our results in Sec. IV.
In Sec. V we summarize our work. In the Appendices we
provide the details for the calculations and simulations for the
two examples.

II. THE STOCHASTIC DYNAMICS

We start from the stochastic dynamics on a ring described
by the Langevin equation:

6 =—DdV(O)+ f(1)+ V2DE(1), (1)

£

Periodic Potential V(0)=V(0+2xr)
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FIG. 1. (Color online) An illustrative picture of a Brownian
particle on the ring described by Eq. (1). When observing the particle
on the ring, the paths with displacement A6 include degenerated
path configurations with A8 + 2nm, where n € Z denotes winding
number.
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where 6 € [0,27) denotes the angular variable on the ring, D is
the diffusion constant, £(¢) is a Gaussian white noise modeling
the thermal bath with (£(¢)) = 0, (£(¥)&(s)) = 6(t — s), and
temperature 7 is set as unit. The time-dependent control
parameter f(¢) denotes a nonconservative force. Here the
conservative potential function satisfies the periodic boundary
condition: V() = V(6 + 2m), which guarantees the rotational
symmetry of the dynamics on the ring. We have assumed that
the Einstein relation D = 7w holds in the nonequilibrium
situation [3], where u is the mobility constant. We have also
used the overdamped approximation, and the case with inertial
term can be discussed without essential difficulty. Equation (1)
can be applied to model a wide class of systems, including the
Brownian motor [14], the rotary motor protein [15], and the
Josephson junction [16,17].

A. Construction on tilted potential

A time-dependent potential function [18] is constructed
with its gradient as the total drift force:

1
PO, f Ol =V(O) — S f(1)P, 2

and Eq. (1) can be rewritten as 0 = —Day[0, f()] +
V2DE(1). Note that ¢[6, f(1)] # ¢[0 + 27, £(¢)], and thus the
particle is treated as moving in a tilted potential. The steady
state of Eq. (1) is typically not given by the Boltzmann-Gibbs
distribution exp(—¢)/Z [or exp(—V)/Z] [19], where Z is the
partition function.

When driven by the force, the particle has different states
when it completes one more circle on the ring, i.e., the states
with different winding numbers are distinct. This property
can be revealed by considering the particle moving along this
tilted potential [5,20]. With using the tilted potential, the ring is
mapped into real line R. Starting from an initial distribution on
[0,27), the ensemble distribution of the particle flows outside
[0,27) to (—oo, +00). The states of the system are determined
by the actual ensemble distribution on the line. When observed
on the ring, there can be degenerated states with the same
distribution and current, and their actual ensemble distributions
on real line are distinct (see Sec. III).

B. Free energy

In this subsection, we provide the procedure to extract
free energy. In our previous work, we have generalized
the free energy [21,22] to nonequilibrium steady states of
stochastic dynamics with natural boundary condition. To our
knowledge, the concept of free energy for nonequilibrium
steady states of Eq. (1) with periodic boundary condition
has not been established before. Our method here is to
extend Jarzynski’s method [23] to quantify free energy. We
define the free energy by the ensemble average of the work
conducted in Eq. (7). This ensemble average quantifies the
energy change due to the work performed and can be obtained
through measuring the work ensemble in experiments [24].
The present definition on free energy is consistent with that by
the canonical partition function for system without nontrivial
topology. For quantum systems with periodic boundary con-
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dition [25], further generalization on free energy definition is
needed.

To calculate the ensemble average, we should count
the path degeneracy caused by the topological property of
the ring: the angular variables 6 of the Brownian motion
on the ring with different winding numbers are indistin-
guishable due to the rotational symmetry. Therefore, we
construct an ensemble that counts paths with all winding
numbers:

A B 2 o 2
(o= doy Y | dbyPy(B0,t0)
0 = 0

x Py (Ontn100t0), 3)

where A is a thermodynamical variable along a path, and
P (Onty|00ty) = P™(@nty|00to)e . The initial state is as-
sumed to obey the steady state distribution Py (6p,ty). Here the
weighted transition probability P} (Onty|6oto) is calculated
by employing the path integral in the winding number
representation [20], where m denotes the winding number,
and (- - - )pp means the ensemble average with path degeneracy
(PD). For each m, the path integral is [26,27]

On+2mm N
P™(@yty|foto) = / DO exp — /

9(] t

1. 1 d(Ddy)
— (0 4 Doyp)? — = ——— = |dt,
X |:4D( + Ddy¢) T,
“)
with ;" 7" DO =limy 0 5= [T, [, 2. Through

a smooth map from the ring to the real line, we can do the
path integration on the line with the point at time 7y being
Oy + 2mm for the paths of winding number m [20]. If Oy
goes one more complete circle, P becomes P"*+! while
the ensemble average of work in the main text has to show
no physical change, and thus the prefactor of P™ is unity
for all m. Note that the integral of the action function on
the exponent obeys ordinary calculus, because we employ
the Stratonovich interpretation and thus the prefactor of the
Jacobian term is 1/2 [27].

We use the definition of work for a single path [22,23,28]
as variation of the time-dependent potential with respect to all
the control parameters:

W= / dtf— 5)

Then the ensemble average for the work with counting all
winding numbers (e~")pp is given by Eq. (3) with weighted
path integral of winding number m:

POntn10oto) = P"(Oxty0ot)e ™o /@0 (6)
Free energy change is
AF = —In{e™V)pp. @)

When the control parameter stops varying and becomes a
nonzero constant afterwards, the system will finally relax to
a nonequilibrium steady state. As f = 0 in the process of
relaxation, the free energy does not change during this period.
When driven by the force, the particle on the ring has different
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FIG. 2. (Color online) Free energy changes of Eq. (8) with f(¢#) = sinwt. The ensemble distributions observed on the ring at time
t = 0,4m,87 are all uniform, with the same free energy and current (degenerated states). Their actual distributions along the tilted potential on
real line are different, and free energy changes afterwards are distinct. The slopes of the dashed lines connecting alternate peaks are the same

from Eq. (12). The parameters are tp = 0, D = w = 1.

states when it completes one more circle. Therefore, winding
numbers should be taken as an additional state variable. Then
the free energy definition is unique for the nonequilibrium
steady state with a specific winding number.

The distinct actual ensemble distributions of the degener-
ated states with the same distribution and current observed
on the ring lead to different free energy changes even when
driven by the same force protocol. Take Eq. (8) below as
an example: the steady state distribution observed on the
ring is always uniform, and there are different states all
with zero current (force), as shown in Fig. 2. Starting from
these degenerated states, free energy changes are distinct
even under the same periodic force f(¢) = sinwt, and the
maximum of free energy is enhanced after each 2w period.
On the other hand, free energy change calculated by Eq. (7)
under periodic force does not show such anomalous behaviors
for systems without nontrivial topology [22,23,29], where
the variation of free energy under periodic force is typically
periodic.

Originally, Jarzynski equality connects the free energy
difference between equilibriums and the work of nonequi-
librium process: (e‘W)path = ¢~2%[23,24,30,31]. It could not
be applied directly to the present dynamics with nontrivial
topology: due to the breakdown of detailed balance, the
free energy in Jarzynski equality can no longer be generally
defined by the equilibrium canonical ensemble. Here, as
an alternative treatment of Jarzynski, we define free energy
difference between steady states through calculating (e=")pp.
Our method agrees with that of Jarzynski for systems without
nontrivial topology and extends the free energy definition in
a consistent manner to systems with nontrivial topology. This
free energy corresponds to the work conducted, and can also be
measured experimentally to distinguish the degenerated steady
states with the same distribution and current observed on the
ring (see Sec. IV).

III. FREE ENERGY CALCULATION IN EXAMPLES
A. First example
We next calculate free energy change in two examples. The
first has a flat conservative potential:

6 = f(t) +2DE@). (8)

The time-dependent potential function is @[6, f(¢)] =
— f()8/D. The steady state with distribution Py, has a current
Jss = f(t)Ps and its average (6.’)” = f(¢). By solving the
path integral with choosing the initial distribution Pg,(6y,ty) =
8(60 — 6p) in Appendix A, we obtain the transition probabil-
ity P(Oyty|to) = 65{[—On + ftf)'” f()dt}/2,iDAt/m]/2m —
1/2m when ty — oo, where 65 is the Jacobi theta function
[32]. Note that the Hatano-Sasa relation [2] is straightfor-
wardly satisfied in this example.

We consider the driving process that starts from a
steady state distribution Py(6y,%) on [0,277) and continues
to time ty. From the work formula [Eq. (5)], we have
W =— [¥dt f6/D. With Py(6o,t) = 1/27, we obtain free
energy by solving the path integral in Eq. (7):

’ fdt].

D{e¥ S tn=fwl/D _ 1}
2x[f(tn) — f(10)]

Atf(ty) — /

fo

—A]-':ln(

13
+ %f (tN)|: )
The detailed calculation is given in Appendix A. When
f(t) keeps constant, —AF = 0 as W = 0. When the control
parameter varies, free energy changes, and current strength
also varies leading to different steady states. Therefore, free
energy quantifies the energy to drive the system from one
steady state to another, consistent with that used to connect
two equilibriums [23,24,30].
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FIG. 3. (Color online) Free energy changes of Eq. (8) with
different force protocols and Eq. (13) with linear force protocol.
(a) The lines are plotted by the explicit formulas: (1) dotted line
is f(t) = AfO(tr), (2) dashed line is f(¢t) = at, (3) solid line is
f(t) = sinwt. The circles are simulations, which sample 300 000
paths. (b) The circles are simulation results with three different
heights of the periodic potential: V; = 0.1, Vo =5, and V; = 50.
Two approximations for sufficiently large and small potential height
are plotted and match the simulations in specific time regions. More
data can be viewed in the Appendices. The parameters are t, = 0,
D=Af=w=ky=1,anda = 0.16.

We discuss different protocols of f(¢): (1)f(¢) = AfO(¢)
with 0(¢) as a step function, (2) f(¢) = at, (3) f(¢) = sinwt,
and we separately have free energy changes —AF:

In{D(*™ AP — 1) /2r Af)}, (10)
In{D{e*™*21/P _ 1}/ QraAt)} + a’ty At? /2D,  (11)

In{ D[ Sineiv=sinw)/D _ 11 /1257 (sin wty — sin wty)]}

+ sin wty[At sin wty — (cos wty — cos wty)/w]/D.
(12)

The detailed calculation is given in Appendix A. We also
use simulation to sample —AJF, and they match the explicit
formulas well, as in Fig. 3. In addition, though we start from a
steady state with zero current ( f(0) = 0), our method [Eq. (6)]
is applicable to cases with nonzero current initially by using
the corresponding steady state distribution. We obtain results
with various initial distributions in Appendix A.

Under the force f(r) = AfO(t), free energy suddenly
changes from zero to a finite value as the system moves
to another state. After the sudden jump of the force, the
system relaxes to a steady state without further free energy
change. Further anomalous behaviors happen with the con-
tinuously varying forces. For f(¢) = at, we have different
varying speeds with distinct a. Consider driving processes
with the same final force strength A = aty, then —AF =
In{D[e*"A/P — 1]1/(2mw A)} + A*ty/2D. Note that for smaller
a, ty is larger to keep A constant, leading to a larger —AF.
This says that even the final force strength is the same, free
energy changes are different for distinct speeds of varying the
linear force.

For f(¢) = sint, when force is zero at t = nw(n € 2), free
energy is zero, and the system has an uniform distribution on
the ring. When force is nonzero, the system does not relax to an
equilibrium but to a nonequilibrium steady state with current.
The actual ensemble distribution of the particle on real line
keeps changing due to the force and diffusion, and free energy
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changes can be different when the force protocols are the same.
For example, the maximum of free energy is enhanced after
each 2 period, as in Fig. 2, and the reason is as follows. The
system starts from a uniform distribution on [0,27) and keeps
diffusing. The value of —AF = ln(exp(ft;N dtfé‘/D)) raises
after a 27 period as shown in Eq. (12). Intuitively, the particle
with larger 6 value moves a longer distance, which needs more
work to drive it there.

We also observe an “undershooting” behavior of free energy
change with f(t) = sinf, where free energy can be negative
during each time period of 7 /w as shown in Fig. 2. According
to Eq. (9), when time approaches to t = 7 /w, f(t) = sinwt
is positive, but [Atf(ty) — fl:f’ fdt] can be negative, leading
to negative free energy. This phenomenon is caused by the
diffusion of the particle. Intuitively the particle keeps diffusing
when dragged by the external force, and it requires more free
energy when the force returns to zero than that when the force
deviates from zero in each half period.

B. Second example

Another example is given by the Langevin equation:
0 = Vokosinko® + f(t) + ~/2DE(t), (13)

with the time-dependent potential function ¢[6, f(1)] =
[Vocosko® — f(2)0]/D. As it is not straightforward to

evaluate the path integral P" (O ty|0oto) = ;}’“’27”" D6 exp —

J16 — Vokosinko® — f(1)]2/4D + Vokg cos kof /2} d1, we
use numerical simulations to obtain free energy. We plot the
simulation results for the linear force protocol f(¢) = at in
Fig. 3.

The simulations for Eq. (13) are verified by the following
approximations in specific parameters regions, as shown in
Fig. 3. First, when the potential height Vj is large, the particle
is trapped into the potential well, and the work becomes
approximately W ~ —6, ft;” dt f /D, where 6, is position of
the minimum value in the potential well. As a result, free
energy change —AF ~ 6, ft;N fdt/D = abyAt/D. Second,
when Vj is sufficiently small, we almost have the conservative
potential flat as Eq. (8) in a short time region, and we can
approximately use the analytic result from Eq. (8). The effect
of the periodic potential accumulates when time goes on, and
the simulation will eventually deviate from this approximation.

IV. DISCUSSION

The free energy changes obtained here can be tested in
recent experimental systems such as the Brownian particle
driven by a laser trap on aring [3,4]. To experimentally prepare
an initial equilibrium state of the system, we should stop the
driving force and let the system relax for sufficient time. Within
this period, the ensemble distribution on the line diffuses to
infinity with approaching to zero everywhere. The distribution
can then be treated as uniform on the ring, i.e., on an interval
of real line with 27 length such as [0,27). Next, we vary the
force to another value with measuring the work conducted in
this process [24] and repeat the experiments for many times.
Finally, we can obtain a converged value on the free energy
change by Eq. (7).
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The origins of the breakdown of detailed balance in the
previous works [21,22,33-36] and here are different. The
systems in Ref. [22] are with a natural boundary condition,
and the breakdown of detailed balance is caused by a
dynamical part with nonzero curl. In those systems, we can
still successfully construct the potential function leading to
the Boltzmann-Gibbs distribution, and then the free energy
is defined by the partition function. In the present work, we
discuss the system Eq. (1) with periodic boundary condition
[2,3,10,37], and the nontrivial topology on a ring allows a
current violating detailed balance. As a result, the steady state
typically does not obey the Boltzmann-Gibbs distribution, and
the free energy could no longer be obtained by the canonical
ensemble.

Besides work, ensemble average for more thermodynamical
variables can be calculated using Eq. (3) for systems with
nontrivial topology, which can reveal richer thermodynamical
information. For example, to quantify the energy dissipated
into the environment, a kind of thermal energy can be obtained.
For the example Eq. (8), from heat Q = — ft(t)N dt éf/D, we

get thermal energy —A7 =2 f;}” dtf?/D (see details in the
Appendices). This denotes the energy continuously put into
the system in order to maintain the current as some thermal
energy dissipates into the environment. The heat leads to the
medium entropy production [2], and the thermal energy change
corresponds to its ensemble average.

V. CONCLUSION

We have shown anomalous free energy changes by the
nontrivial topology of the overdamped Langevin dynamics
on a ring. We have demonstrated the anomalous behaviors in
examples with both exact solutions and numerical simulations.
The obtained free energy change is experimentally testable and
can help to distinguish the degenerated steady states observed
on the ring. The system Eq. (13) with periodic force can
have richer phenomena including resonance. Future works
also include conducting experiments to measure the energy
changes calculated here and generalizing our treatment to a
quantum regime.
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APPENDIX A: DETAILED CALCULATION OF THE
FIRST EXAMPLE

In this Appendix, we give detailed calculation of the
first example [Eq. (8)]. Its time-dependent potential function
is

1
PO f (O] = =5 f(1)8. (AL)
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1. Transition probability

The path integral for the winding number m is

On+2mm
POty |60t0) = / Do
0o

X exp{—/N %[é—f(;)]Zdt}. (A2)

fo

We solve it by the semiclassical method below. The action is

Lo
S_4D/z; [6 — f1°dt. (A3)

Its Lagrangian equation is
6—f=0, (A4)

which leads to the solution
t

0(r) = / fds + At + B, (AS5)
to

where A and B are undetermined coefficients. By applying the
boundary condition, we have

tn
0N=f fds + Aty + B, 6y = Aty + B, (A6)
fo

which gives

by — 60— [, fds
A =
At

(A7)
5 _ Ot + bt + 1o [ fds
N At '

Then the action of the classical path is

1 w7
S= Oy — 6y — dt| . A8
4DAt|:N o /to f } (A8)

Therefore, we have the transition probability for each winding
number m:

1 1
P"(Ontn|Boto) = —— 10 2
Ontn10oto) =\ D Ar eXp{ 4DAt|: N+ mm

tn 2
— 6 —/ f(t)dtj| } (A9)

If choosing the initial distribution p(6y) = §(6 — 6p), the
probability in the winding number representation is

1 On — [V f(t)dt iDAt
P(emmto):ges(— ’°2 — )

oo
2L 3 o~ DA —imloy— [V f(O)di]
n

m=—00

1
_ A10
> (A10)

when ty — oo.
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2. Free energy

Next, we consider the process of varying control parameters from time #, to time ¢y. The work is

L[ .
W:——/ dt f6. (A11)
D J,
The weighting propagator for the work (e~")pp with winding number m is
, B On+2mm N [9 _ f(t)]2 1 N .
Py (Ontn|00to) = Do exp | — ——dt+ — dt f6 ¢, (A12)
) f 4D D J,

which can be calculated out explicitly by the similar method as above. We obtain the weighting propagator with winding
number m:

I 1 w7
PijOxtn160to) = \| o exp— o { [eN +2mm — 6y + / fdt] — 4AILf(ty) Oy + 2m) — f(to)eo]}. (A13)

fo

We let the initial state obey the distribution p(6y,%y) = 1/2m on [0,27) and get

2 o 2
(e e = / oy ) f d6 Py (B0.10) Py (Bt |60to)
0 0

m=—00

2w 1 00 1 1 Iy 2
'/(; d@og /;oo d@N,/ 4xDA? exp _4DAZ‘ { |:0N — 0y + / fdt] — 4At[f(tN)9N — f(l‘())@o]}

fo

D{e2 L n)=Fw)/D _ 1y

1 N
T 2lf ) — )] eXpr(’N)[Aff“N)— f fdf] (Al4)

3. Thermal energy

We can also calculate the ensemble average of the heat:

| L
Qi——/ dtof, (A15)
D J,
and the weighting propagator for the heat (¢~?)pp with winding number m is
On+2mm Iy Q _ t 2 1 Iy .
Py (Ontn|0oto) = / Dlexpy — / ﬂ dt + — / dtof;. (A16)
0 f 4D D J,

Similarly, by the semiclassical method, we obtain

[1 1 w7 w
P (Oniy|60to) = - Oy + 2wm — 0y — 3 dr| —8At dif?y. Al7
0 (Ontn|6oto) 17DAr P 4DAt{|:N+ Tm — 6 / f ] /to f} (A17)

fo

Let the initial state obey the distribution p(6y,%) = 1/27 on [0,27), and

2 0 2w 2 tn
€ =[x Y [ deoRm<9o,to>Pg<9NtN|eoto)=exp{5 / dtfz}- (A18)
0 0 fo

m=—00

4. Different force protocols

For some special protocols of f(¢), we have the following:
(1) When f(t) = f, being a constant,

(e Wpp = 1, (A19)

) 2
(e”%)pp = exp Bfo At¢. (A20)
(2) When f () is a step function with strength A f starting at #, f = Af3(1o), and

w _ D{eZTrAf/D _ 1}
(e"")pp = T amar (A21)
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(e ?)pp = exp {%(Af)zm}- (A22)

(3) When f(t) = at is linear function with f(#) = 0, f = a, and

D eZnaAt/D -1 1
(e pp = % exp [Eazmmr)z], (A23)
20213 — 13
“)pp = — N 0t A24
(e”%)pp = exp { D 3 } (A24)
(4) When f(t) = sinwt, f(t) = wcoswt, and
D{e2n[sinthfsinwt0]/D _ 1} 1 1
(e Wpp = - - exp | — sinwty | At sinwty — —(cos wty — coswty) | ¢, (A25)
2 [sin wty — sin wty] D w
1 1
(e’Q)pD = exp {B |:At — 2—(sin 2wty — sin Za)to)i| } (A26)
w

If ty —tg = 2nn/w(n € Z7) and ty = mm/w(m € ZT), then (¢=")pp = 1 and the free energy equals zero. The free energy
and the thermal energy are equal to each other when sin wty — sinwfy = 0 and ty = 2m — )7 /2w(m € Z™T).

5. Free energy with different initial distributions

In the last subsection, we calculated the ensemble value by using the initial distribution on [0,27). Here we demonstrate
that the result is different if we choose other initial distributions. In general, different initial distribution (including the uniform
distribution with different intervals on real line) leads to distinct results of free energy, which is a consequence of applying the
washboard potential. The choice of distribution depends on how to implement the initial state in real experiments.

First, we consider the uniform distribution on [—s,7) initially, and get

N I i
{e")ep = / dbo7— exp B{GO[f(tN) = ft)] = f(tzv)/ fdt+ Alfz(tzv)}

- T
D{eﬂ[f(tN)—f(lo)]/D _ e—ﬂ[f(lN)—f(to)]/D} 1 In
= exp _f(tN)[Atf(tN) - / f dl]' (A27)
2 [f(tn) — f (o)l D %
For the force f(t) = sin wt, we obtain

D{en[sinth—sinwto]/D _ e—n[sinth—sinu)to]/D 1 1
(e_W>pD = - - exp — sinwty | At sinwty — —(cos wty — cos wty) |. (A28)

27 [sin wty — Sin wiy] D w

Note that for r = /2 and t = 37/2 (with #y = 0), the maximums of free energy change are now equal to each other. Thus, the
consecutive two peaks of free energy, e.g., t = 7/2 and t = 37 /2, have the same height, different from that shown in Fig. 2,
where we use the result with the initial distribution on [0,27).

Second, we consider the delta distribution Py(6p,%p) = 6(6p) initially and get

00 1 N
(e ep = / d603(60) exp B{GO[f(rm )] = ft) / Fdi + Azf2<zN>}

oo
1 v
= exp Bf(tN)[Atf(tN) —/ fdt]- (A29)
to
For the force f(t) = sin wt, we obtain
1 1
<€7W>PD = exp D sin wty [At sin wty — —(cos wtyg — cos th)]. (A30)
w
[
6. Numerical simulation get a normalized steady state distribution Pg(6). The path

The Langevin equation in the difference form is ensemble for the work can be sampled by

46 = f(t)dt + V2DdW (7). (A31)
N
_ 1 .
Starting from a delta distribution 8(6) at time o = 0, we can (¢~ Jep = Z Z exp |:5 Z J@)0(,)dt :| (A32)
sample Eq. (A31) with f(¢) = 0O for sufficiently long time and 0(t0)€ Pss(0) path n=0
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where Py, is the steady state distribution, and d is small time
slice.
Similarly, the path ensemble for the heat is

N
Z Zexp [%gé(t,,)f(tn)dt]. (A33)

0(to)€ Pys(0) path

(e Q)pp =

For simulations, we consider the following force protocols:
(1) f(t) = at is linear function with f(#) =0, f = a.
(2) f(t) = sinwt, and f(r) = wcos wt.
The case with f(#) = Af6(z) is straightforward for simulation
and thus is not plotted.

In simulations, we use 6 as a variable in (—00,00), and
does not restrict it in [0,27), because the particle is treated
as moving in a washboard potential with 8 € (—o0,00). Then
one may wonder what is the difference of simulating Eq. (1)
on a ring and on the real line R. The topological property of
the ring space is reflected by (1) the initial distribution used
in simulation is set on the ring [0,27); (2) to get the evolved
distribution on the ring, we resum up the distribution pieces
on the real line with modulo of 27. By this procedure, for
example, the steady state distribution for Eq. (8) is always
uniform on the ring, while the probability distribution for
Eq. (8) on the real line is approaching zero everywhere. When
doing analytical calculations, we treat 6 as a variable in [0,27)
explicitly and then include all the possible stochastic paths
in the operation process during At =ty — fy by counting
different winding numbers and finally integrating Oy € [0,27).
These different treatments on 6 in the numerical and analytic
methods are essentially the same, because they both count
all configurations in the path ensemble. They also lead to
consistent results, as verified in Fig. 3.

APPENDIX B: DETAILED CALCULATION OF
THE SECOND EXAMPLE

In this Appendix, we give detailed calculation of the second
example [Eq. (13)]. The time-dependent potential function is

1
P10, f()] = oV cos kot — f(1)0]. (BI)

The steady state does not obey the Boltzmann-Gibbs distribu-
tion when the force performs [38]. As it is not straightforward
to obtain an explicit formula by solving the path integral of
this example, we use numerical samplings to simulate the free
energy differences.

Numerical simulation

The Langevin equation in the difference form is
d0 = Vokosinkof dt 4+ f(t)dt + ~V2DdW(t). (B2)
The path ensemble for the work is

N
Y. doexp [%;f(tn)O(tn)dt} (B3)

0(10)€ Pss(0) path

(e V)pp =

where Py, is the steady state distribution:

1 1
Py (6p) = - &P ( D Vo cos k090>, (B4)
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100 ‘ <
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0 10 20 30
Time

FIG. 4. (Color online) Free energy of the example Eq. (13) with
linear force protocol f(z) = at are simulated. We consider three
different values of k, for free energy: ko = 1, kp = 10, and ky = 50.
The other parameters are tp =0, D =1, V = 5,and a = 0.16.

with the partition function:
2 1
Z :/ dfy exp < ——W coskgeo). (BS)
0 D
Similarly, the path ensemble for the heat is

N
> D exp [% ;ém)

()€ Pss(6) path

(e %)pp =

x [Voko sinkoB(t,) + f(t,)] dt:| . (B6)

Besides the figures in the main text, here we also simulate
free energy and thermal energy for different values of k¢ in
Eq. (13), as shown in Figs. 4 and 5. )

We consider the force protocol f(¢) = at with f =a in
time interval [0,7y]. We have the following approximation:
When ¢ is very small, f(¢) in Eq. (13) can be neglected. Then
the particle will soon be trapped in the wells of the potential
¢. Thus, 6 is a constant under the ensemble average. In our
simulation, we let ko = D = 1, and thus the potential wel} is at
0 = m. Asaresult, the free energy change AF ~ & ft:)'“ fdt =
am At.

o Simulation k=1 (V,=3)
7/ a| % Simulation k=1 (V,=5)
/A
;oA X Simulation k=2 (V,=3)
600 soAB A Simulation k=4 (V,=3)
oA = = Approximation: VAt
a
/oA
—~ /A
/A
%400 7
v H / 4
< ;A x*
= N xX
/A o
-— /s %
/A ~ %% o
/A Pl O%
JA XXX oOx*
200f o i
/ e Txx X )
e o gwxx® 5o%®
£ PRt tle *55’555 .
KA X/xfx/xx ‘&§ﬁ§é§3,~~""#
KR g Rk -
0 xﬁﬁe&éé%m‘ )
Time

FIG. 5. (Color online) Thermal energy of the example [Eq. (13)]
with linear force protocol f(t) = at are simulated. We consider three
different values of k¢ for thermal energy: kg = 1, ko = 2, and ky = 4.
The other parameters are tp = 0, D = 1, V = 3(5), and a = 0.16.
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For the thermal energy, we have approximately

2. )

6(to)€ Py () path

(e 9)pp ~

1 o(tn)
X exp [— / Voko sin(ky6) d9:|, B7)
0(to)

since the term f(¢,)d0(t,) ~ 0 as 6(¢,) is constant. Notice that
when doing numerical simulation, we used the pre-point in
each interval, which corresponds to Ito’s calculus. Thus, we
should apply Ito’s formula [19]: for a smooth function A(6(¢))
with 6 obeying the stochastic differential equation (1),

dA@®) ~ A'()do + A" 02D dt, (B8)
to the order of d¢. Then we get the integral form:
0(in)

A@@)|Y w/ A’(e)d9+/NA”(e)Ddz. (B9)
0(to) to

PHYSICAL REVIEW E 92, 062129 (2015)

We let A(6) = cos(kpf) and have

1 O(ty)
— Voko sin(ko®) d6
D Jou,)

1 1
~ —Vokoy ——I[coskpB(ty) — cos koO(ty)]
D ko

— koD At cos koe(tN)}

~ —Vokg At cos koB(ty), (B10)

where we use the approximation that 8(z,) and cos ko0 (ty) are
constant. As a result, the thermal energy difference is a linear
function of time ¢ with slope Vok3.

When 1 is sufficiently large, f(¢) is dominate in Eq. (13).
Then the free and thermal energy change of the system behaves
like the first example [Eq. (8)].

In the time region between the above two, we use dyp¢p =
—[Voko sinko + f(¢)]/ D and get that the potential wells will
disappear when f(t) > Vpko. Thus, we have approximately
that the crossover of the above two cases happens at the time
t ~ Voko / a.
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