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Bridging equilibrium and nonequilibrium statistical physics attracts sustained interest. Hallmarks of
nonequilibrium systems include a breakdown of detailed balance, and an absence of a priori potential function
corresponding to the Boltzmann-Gibbs distribution, without which classical equilibrium thermodynamical
quantities could not be defined. Here, we construct dynamically the potential function through decomposing
the system into a dissipative part and a conservative part, and develop a nonequilibrium theory by defining
thermodynamical quantities based on the potential function. Concepts for equilibrium can thus be naturally
extended to nonequilibrium steady state. We elucidate this procedure explicitly in a class of time-dependent
linear diffusive systems without mathematical ambiguity. We further obtain the exact work distribution for an
arbitrary control parameter, and work equalities connecting nonequilibrium steady states. Our results provide
a direct generalization on Jarzynski equality and Crooks fluctuation theorem to systems without detailed

balance.
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I. INTRODUCTION

Thermodynamics and statistical physics provide a general
framework for study of systems in equilibrium. On the
contrary, a lack of general principles leads to difficulty in
understanding nonequilibrium processes. Recently, a series of
equalities referred to as fluctuation theorems [ 1-8] were estab-
lished in a wide class of nonequilibrium systems. Remarkably,
work equalities such as Jarzynski equality [2] and Crooks fluc-
tuation theorem [3] connect work done in the nonequilibrium
process to free energy differences between equilibriums with
detailed balance [9]. For systems without detailed balance,
a priori a potential function, or Hamiltonian, corresponding
to the equilibrium Boltzmann-Gibbs distribution is typically
absent. In such cases, thermodynamical quantities based on
the potential function, e.g., free energy, could not be defined.

There have been continuous efforts to bridge equilibrium
and nonequilibrium steady states (NESSs), such as the Hatano-
Sasa’s relation [10] based on the energetics [8,11] and the
fluctuation theorems of entropy production [12—16]. In these
relations, the breakdown of detailed balance is treated as
a source of heat or entropy production, and the potential
function is usually defined by ¢ = —In p, which requires
a prior knowledge on the steady state. Alternatively, we
investigate in this paper whether the thermodynamical theory
for equilibrium can be naturally generalized to NESSs, so that
we can consistently define thermodynamical quantities even
without a prior known potential function. If this can be done,
can work equalities be directly extended to systems without
detailed balance, and what is the effect of nondetailed balance
on the work distribution?
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We consider the Langevin dynamics with explicitly time-
dependent control parameters. The detailed balance condition
can be violated due to a probability current at NESSs. By
decomposing the system to a dissipative part and a conservative
part, we dynamically construct the potential function, which
also leads to the Boltzmann-Gibbs distribution at steady state.
We propose a nonequilibrium theory by defining thermody-
namical quantities based on the potential function constructed.
Thus, the breakdown of detailed balance does not prevent us
to use consistent concepts from equilibrium thermodynamics.
We further investigate the process of doing work, and obtain
the exact work distribution and generalized work equalities.
Based on our decomposition, nondetailed balance corresponds
to the conservative part, and its role on work equalities can be
classified unequivocally.

This paper is organized as follows. In Sec. II, we provide
the background on decomposing the stochastic dynamics in
general. In Sec. III, we present our decomposition for the time-
dependent Ornstein-Uhlenbeck process, give the correspond-
ing Fokker-Planck equation, and define the thermodynamical
quantities based on the potential function constructed. We
then calculate out the work generating functional, and obtain
the work distribution and the generalized work equalities in
Sec. IV.In Sec. V, we give detailed discussions on our results.
In Sec. VI, we summarize our work. In the Appendix, we
provide the procedure to calculate out the work generating
functional from the path integral method.

II. BACKGROUND: DECOMPOSITION FOR
STOCHASTIC DYNAMICS

Before demonstrating our method, we briefly review the
decomposition for the nonlinear Langevin dynamics with
multiplicative noise: x = f(x) + N(x)¢(¢), where x is a n-
dimensional state vector with X as its time derivative. The
drift force is f(x), and ¢ is a k-dimensional Gaussian white
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noise with (£(1)) =0, (¢@®)¢T (1)) =8t — )1, where I
is the identity matrix, §(¢t — t') is the Dirac § function, and
(- - - ) represents the noise average. The symmetric and positive
semidefinite diffusion matrix D(x) is defined by N(x)N (x) =
2¢ D(x), where the superscript T denotes the transpose, and
¢ playing the role of temperature is set to be unity in this
paper. Whether the detailed balance condition holds or not, a
decomposed dynamics equivalent to the above equation was
discovered [17,18]: [S(X) + A(X)]x = —Vyx¢p(X) + N(x);(r),
where S(x) defined by N (x)]\7 T(x) = 2eS(x) is a symmetric
and positive semidefinite matrix, and A(x) is an antisym-
metric matrix. The scalar potential function ¢(x) constructed
corresponds to the electrostatic potential in classical physics
[19], and leads to the Boltzmann-Gibbs distribution pg(x) o
exp[—¢(x)] at NESS [20]. This decomposition scheme has
also been successfully achieved in the discrete Markov
process [21].

III. DECOMPOSITION FOR TIME-DEPENDENT SYSTEM

In the following, we generalize the above decomposition
to explicitly time-dependent systems in order to study the
nonequilibrium dynamical process driven by the external
control. To elucidate this procedure without mathematical
ambiguity, we take the multidimensional Ornstein-Uhlenbeck
process added with control parameters as the model:

X = —Fx+ u(t) + vV2D¢(1). (1)

The n x n force matrix F and diffusion matrix D are constant
matrices, i.e., independent of state x and time t. The n-
dimensional explicitly time-dependent vector w(#) denotes
the external control parameter. This model is free of Ito-
Stratonovich’s dilemma [22]. Avoiding mathematical com-
plication, we restrict our discussion to the natural boundary
condition.

As a paradigm, Eq. (1) contains typical characteristics
of a nonequilibrium process: (i) it is normally dissipative,
V . Fx # 0; (ii) the drift force also has nonzero curl V x
Fx # 0, where the cross product for n-dimensional vectors
is defined as X X'y = (x;¥; — ¥iX;)uxn [17]. Thus, the drift
force cannot be written directly as the gradient of a potential
function: Fx # —DV¢(x), corresponding to the breakdown
of detailed balance [23]. This system covers standard examples
studied both theoretically and experimentally: it can describe a
Brownian particle dragged in a harmonic potential [24-29], a
charged Brownian particle in a uniform magnetic field [30-32],
a driven harmonic oscillator with a thermostat [33], and a heat
engine in contact with heat reservoirs [34].

A. Construction on the potential function

We find that Eq. (1) can be decomposed as
(S 4+ A)x = —V,p(x,0(t)) + V2SE (1), )
with the time-dependent potential function
p(x,a() = 3x" Ux — 1 (O Ux + g(1), 3)

where g(#) is a smooth function of time 7, and & denotes the set
of control parameters including f and g. We have introduced a
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new control parameter f = F~!u, because f is usually manip-
ulated in experiments of dragging a Brownian particle [24,27].
The matrices U, S, A can be solved as follows. Given matrices
F and D in Eq. (1), we first obtain the antisymmetric matrix
Q by the equation FQ + QFT = FD — DFT. The matrix
U is given by U = (D + Q)"'F. Then, S =[(D + Q)" +
(D—-0)"1/2,A=[(D+ Q)" =(D-0Q)']/2,and A =
0 is equivalent to Q = 0. The construction on the matrix
U has been rigorously proved for arbitrary matrix F in the
time-independent linear diffusive system [23,35].

To better illustrate our decomposition, we consider the
example of a charged Brownian particle in a three-dimensional
electromagnetic field B,E(f): mXx = —yx+ (¢/c)B x x —
kx 4+ qE(t) + ¢(t), where y, m, g, k denote respectively
friction constant, mass, charge, and stiffness of a harmonic
potential. In zero-mass limit m — 0, this equation of motion
directly reduces to the form of Eq. (2), where B x x serves as
Ax. The presence of Lorentz force (¢/c)B x x can induce a
circular current, which means that a nonvanishing A indicates
a breakdown of detailed balance. The conservation of the
Lorentz force also implies that breakdown detailed balance
does not dissipate based on our decomposition.

According to Eq. (2), Eq. (1) can be rewrittenasx = —(D +
o)V + @I;(r). Therefore, the drift force Fx contains
two parts: — DUX, which generates a motion towards the origin
if U is positive definite, and —QUXx, which corresponds to a
motion along the constant values of x” Ux. When the noise is
switched off and the control parameter is absent, the potential
function ¢ is the Lyapunov function for the dynamical system
[19,36-38]: dp/dt = —xT (S + A)x = —x! Sx < 0. Thus, the
energy dissipates by the presence of the matrix S, and the
matrix A does not change the potential energy. As a result, S
and A respectively correspond to the dissipative part and the
conservative part.

B. Fokker-Planck equation and the steady state

The Fokker-Planck equation for Eq. (1) with the control
parameter fixed as « is

al‘p(xat) = L(V9X’a = ‘xo)p(xvt)v (4)

where L(V ,x,a) = V:[D 4+ Q1[Vx¢p(X,a) + V]. The break-
down of detailed balance is equivalent to O # 0 by the analysis
of probability current at steady state [37], and U = D~'F
when Q = 0 [39]. Whether Q = 0 or not, the steady state
by solving Eq. (4) obeys the Boltzmann-Gibbs distribution
p(x,t — 00) x exp[—¢ (X, = ap)]. This realizes an analogy
of the Boltzmann-Gibbs distribution from equilibrium to
NESS.

With varying control parameter, the modified Fokker-
Planck equation for Eq. (1) is [5,20]

. 0 In pgs(x, (1))

o, p(X,1) = |:L(V,x,ot) +a i| px,t), (5)
da

where p;,(X,0e(?)) is the instantaneous steady state distribution
of the system at time ¢ under the influence of the control
parameter. From Eq. (4), the instantaneous steady state also
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obeys the Boltzmann-Gibbs distribution:

1
Z(a(1))
where Z(a(t)) = fdx exp[—¢(x,a(z))] is the partition func-

tion. The system will relax to a NESS with distribution p = pg;
after the control parameter stops varying.

pss(X,00(1)) = exp[—¢(x,a(1)], (6)

C. Thermodynamical quantities

Within the above framework, we give definitions on
thermodynamical quantities. From the partition function, the
free energy up to a constant is

F(t) = —InZ(a®) = —3f' OUE0) +g@). ()

We consider the process of varying control parameters from
time 7 to time ¢y. Then, we define work as

Iy a IN . t
Wi/ dzd—¢=—/ atfTUx+g0| . ®
1o do 1y fo

This denotes a change of the total potential with respect to the
control parameter, which is called the inclusive work [40,41].
It is identical to the work on dragging a Brownian particle in a
harmonic potential [24,26], and moving a charged Brownian
particle in a uniform magnetic field [30]. When g(¢) is a
constant, W = fléN dt £(d¢/0f), which is similar to that in the
Jarzynski equality [2].

We consider an infinitesimal process via the change of the
parameter e. The work performed on the system is dW =
(0¢/da)d e, the heat absorbed from the environment is dg =
(0¢/0x)dx, and the increasing internal energy corresponds to
the change of the potential function d¢. Then, the first law
holds: d¢ = dW + dq. For systems with detailed balance,
e.g., the Langevin equation without the nonconservative force
[10], these definitions coincide with the energetics [8,11]. Our
definitions can be generalized to stochastic dynamics with
nonlinear drift and multiplicative noise [20], which are also
consistent with the energetics.

IV. RESULTS

A. Work generating functional

Next, we study the nonequilibrium process by an arbitrary
continuous variation of the control parameter «. The system is
assumed to be at NESS at time #y, and relax to another NESS
with distribution py at time ¢ after the control parameter stops
varying. We explicitly calculate the generating functional for
the work through the path integral formulation [42]:

XN N
(€ pan = / Dxexp {—/ di[(x + Fx — p)T
Xo

o

xD‘l(X+Fx—;L)]/4—AW}, 9)

where A is an introduced parameter, and the
measure is given by [M'Dx= [Fdxy...["7dx

fj;o 0ss(X0,0(19))dXo/| det(4r T D)V  with © as the
discretized time interval. From the detailed calculation in the
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Appendix, the result appears to be elegant:

(e pun = €xp {/\AFliﬁ —(A—2%)
In t L. , .,
x / d;/ di fT () Ue >Ff(t)}. (10)
10 )

B. Work distribution

Applying the Fourier’s transformation to Eq. (10), we get
the main result about the work distribution:

W (W)|P(W>)2]’ 0

PW) = 202(1)

1
V2w o2(t) P [

where (...)|paw) denotes the average over work distribution
and

2
(W)lpowy = AF + "2(”, (12)

tn t . L
o2(t)=2 f dt / ditTOUe ). (13)
fo )

The work distribution solved previously for systems in
two or three dimensions [26-32] serves as a support of our
general result. For systems with detailed balance and a known
potential function, Eq. (11) is consistent with the previous
result [43]. For systems without detailed balance or a prior
potential function, Eq. (11) has not been obtained. To our
knowledge, there is not a single experimental test on Eq. (11)
for cases without detailed balance. In applications, one need to
explicitly calculate out Q, U, the first and the second cumulant
to get full knowledge about the work distribution. Besides,
from Eqgs. (7) and (12), we have (W)|pw) = AF.

C. Work equalities

From Eq. (10), we derive nonequilibrium work equalities in
the following. We emphasize that the results below also depend
on the construction of the potential function, and thus they
generalize previous work equalities that are typically derived
with a prior known potential function [8]. Let A = 1in Eq. (10),
and we get the generalized Jarzynski equality connecting two
NESSs:

(™" )pan = €727 (14)
The free energy difference is explicitly independent of the
magnetic field denoted by the matrix A, which is consistent
with the Bohr—van Leeuwen theorem of charged particles at
equilibrium [30,44,45].

By definition, (e W) = [T aWe W Pp(W), and

(e U=PWhy g = [T qwie= =MW pp(WT), where the sub-
scripts F, R denote the forward and the reverse process
respectively. We consider the time reversed process with
t — —t, and the work W corresponds to the reverse process.
From Eq. (10), we get (¢ W) p = (=17 pe=AF  where
we consider the state variable with even parity under the time
reversal. From these relations, the detailed fluctuation theorem
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is obtained:

PrW) _ w-ar, (15)
Pr(—=W)

Besides, as (W)|paw) is odd and o2(t) is even under time
reversal, (WT)| pawy > AFT holds for the reverse process.

We can also rewrite Eq. (14) as another form:
(exp{ft(t)N dta[d In pss(X,0)/0et]}) pan = 1, which is consistent
with the Hatano-Sasa’s relation [10]. They start from a
dynamical equation with a known Hamiltonian perturbed by
a nonconservative force in the periodic boundary condition,
and their explicit derivation is for the one dimensional case in
which Q = 0. Here, we consider the Langevin dynamics with-
out a prior Hamiltonian, and the potential function governing
the dynamics through Eq. (2) is explicitly constructed. We
study the natural boundary condition, and nondetailed balance
is caused by Q # 0. Then, the role of the detailed balance is
classified, which cannot be achieved by rewriting the Hatano-
Sasa relation. Furthermore, through the Jensen inequality [22],
we have (f;” dto{d[—In pgs(x,0)]/d0t}) pan = 0, serving as
the second law of thermodynamics.

V. DISCUSSION

Four remarks are in order. First, our result encompasses
cases without detailed balance, i.e., Q # 0. The work equal-
ities are not explicitly dependent of the matrix Q. Second,
the singularity of the diffusion matrix D, i.e., det(D) = 0,
is pseudo, as D alone does not appear in our result. The
appearance of D is in the combination D + Q, which is
assumed to be nonsingular [17]. Thus, a natural regulation
procedure exists: we can first put perturbative parameters into
D to make it nonsingular, and safely let these parameters go
to zero after the derivation. Third, there are alternative ways
to choose the steady state distribution, such as pg(X,0) =
exp[—o(x,a)]/ Z(«(0)) [20]. Then, the form of work equalities
should be modified correspondingly. Fourth, the explicit form
of our result depends on the choice of the control parameter,
such as f or u. Our derivation allows us to choose any linear
transformation of u by direct variable substitution.

The potential function Eq. (3) is uniquely constructed up
to a reference point [23]. The nondetailed balance part Q
does not lead to more freedom on the construction of the
potential function, as the matrix U is uniquely solved for given
matrices F, D. Besides, there can be a shift on the energy
reference point denoted by g(¢), which is called gauge freedom
[20,40]. The work equalities are free of this gauge problem,
and are invariant once g(t) is specified. This gauge freedom can
be determined by the way of measuring work in experiment.
For example, we can choose g(¢) = f7 Uf/2 so that ¢(x,a) =
(x —HTU(x — f)/2 to model the experiment of moving the
minimum position of the harmonic trap [24,26]. However, this
potential function gives zero free energy difference, because
the gauge chosen makes the reference point evolve with the
system. To figure out the free energy change by varying f, the
reference point should be fixed, i.e., g(¢) be a constant.

Our framework adopts an “inside” view of the system, and
an inside observer has the only knowledge on the given dynam-
ics. We explicitly construct a potential function by decompos-
ing such a dynamics. The potential function gives information
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on the steady state by leading to the Boltzmann-Gibbs
distribution, and has the dynamical meaning through Eq. (2). It
also serves as the Lyapunov function governing the dynamics
when noise is zero [19,36-38]. Compared with our method, an
alternative way to define the potential function by ¢ = —1n p
[10,46] requires a prior knowledge of the steady state.

VI. CONCLUSION

We have developed a thermodynamical theory unifying
equilibrium and the NESS. We have also obtained explicitly the
work distribution and generalized nonequilibrium work equali-
ties, which demonstrate that the free energy difference between
NESSs is explicitly independent of nondetailed balance. Our
framework can be generalized to the Langevin dynamics with
nonlinear drift force and multiplicative noise. The fluctuation
relations about the heat g in our framework need to be
investigated. For the second order Langevin equation, the
parity of state variable under time reversal requires care when
applying our method. Our result also remains to be tested
experimentally in systems without detailed balance.
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APPENDIX: DETAILED CALCULATION ON THE WORK
GENERATING FUNCTIONAL

In this Appendix, we give the main steps of the explicit
calculation on the work generating functional (e~*W). From
the path integral formulation [42], we have

(e > path

+00 400
= / f e W P(xnty [Xoto) pss (Xo)dXod Xy
—00 —00

XN 1 Iy
:/ DXGXP{_Zf dit(x+ Fx)' D™'(x + Fx)
Xo

fo

N
+f dt[JTX+ITX—%ILTDlﬂ—)»g(t)}}, (AD)

where the measure is given by f):)” Dx= [Zdxy...
fj;o Dss (Xo)dxom, and for convenience of follow-
ing calculation we have introduced J7 = %;LTD’I, 7 =
LT DTIF 4+ 207 0U).

It should be emphasized that the stochastic interpretation
in the path integral of Eq. (A1) is Ito’s, and thus we use the
prepoint discretization in the following. The reason for using
Ito’s here is that there is a class of equivalent forms of the path
integral formulation for the Ornstein-Uhlenbeck process [42].
Each has a specific stochastic interpretation and a correspond-
ing Jacobian term on the exponent. After integration, the result
from any form is the same, and is independent of the stochastic
interpretation. Here, we choose the form with Jacobian zero,
and Ito’s interpretation should be applied.
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Next, we calculate out this path integral in its discretized
form by recursion, i.e., integrating Xo, X, ..., Xy in order.
As the term ft:’v dt[—pu" D~ 'u/4 — rg(t)] and the partition
function of the initial distribution Z(#;) do not depend on the
spatial coordinates x, we do not include them when doing the
integration on x, and will add them up later. Integrating x,, we
have

+00
/ dxo ex ! [x; —x0 + TFX ]T
o [det@rrD) 2 TP T T 0

X D’l[xl —Xo + TFXp] +Jg(xl —Xg) + rlgxo}
X ex —l A "D — Q)
P =5%o 0Xo + g ( 0)" 'xo

1 1 T T T —1
= Wexp {_EX] A]X1 —+ [(TIO —_ JO)BO

VT 7T+ (o] — 35) By ey Jo>},
(A2)

where V=1-tF, i} =<Il +ul(D—-0)"', By=
VD=V +2tA, and A; = (D' =D 'VB,'VI D)y
27.

We then integrate x; and get tl; = D! VBQ_I(_JO +
tio) + Jo + tI;. We repeat these procedures, and after inte-
grating Xy we have

—AW

<e >path

N
o exp {r Z (= I8 +<00)B, " (-J, + rin)}

n=0
: 2| - e )
= exXp 7 |:Z 1'2 - T +Iz FijIj .
i,j=0
(A3)
with By = 2tAy, C,-1 = D7'VB'| = A,VA',,

Jn = %Dilu(tnl TIn = Cn—l(_Jn—l + TIn—l) +Jn—l + flna
Il =<1 +ul(D— )7, and I,=3i[F'D 'n@t,)+
20D + @)~ 1(t))(n > 0).

Here, we have introduced E;;, Il;;, and I';; for the
convenience of calculation. The recursion relations for E;;,
I1;;, and I';; fori < j are

B =2tB; + Tivrip1 —2C T Tigy i1 + CI Ti1ia1 G,
Tii =2tB;7 " + CITis1,11Ci,
My =2tB7" — C/ Titris1 + C/ Tisrin Ci,

ij = _2(1 - CiT) T C]'T—lnjj’

Ty =2C]...C]_ T,
M =Cl...C]_ T,
M =T]Ciy...(Ci— D). (A4)
Using Tyy = Eyy = Iyy = Ay, By =

A,'_IV_IAi_lD_IV,C,' = A,‘+|VA[-_1,al’ld Ci_i1Cip... Cj =
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AiVi’jA;I, we have fori < j
Ty = A"
By =2tD+1*FA;'FT,
M; =tA;'FT,
Ly =247 (v,
B =202 FA;\(VITHTFT —a?D(v/—=HT FT|
I; = tA;\(VITHTFT,
M =tV/ A7 FT —2¢Vi~i-ID, (AS)

After adding the term ft:)N di[—pu" D7 'u/4 — rg(t)] to
the exponent and multiplying the inverse of the partition
function for the initial distribution 1/Z,, we get the generating
functional:

—AW

<e >path

1 O _
=w4—fﬂmwm%%5ﬂ§:MRD—Qﬂ
i,j=0
N

x AT VI + O iy ] + 1A Y S mi (D - )
=0

- 1
x Ag'(VHT(D + O) ' + 5;ug(D —0) Ay

x (D + Q)—luo}. (A6)

We can write the above formula in the integral form:

(6 )path

)\'2 N N , , ,
=exp{—/ dt/ dr flF (e,
2 0] 4]
N N ’
+ A / dr / dtp” t)(D — Q) e T ()
to t

tn ,
+k/ df' p(D — ) Ay'e™ T (D 4 @)

to
R
X IL(t ) - Ef Uf|fo ) (A7)
with A;' = U1, and
auy=1P" 07U I (D4 o), 1<t
(D—0) e FU{ D+ 0)!, 1>1.
(A8)

After doing integration by parts and replacing w by f = F~'u,
we obtain the work generating functional:

(&) patn = exp {/\AFlﬁﬁ — (=27

N t . , .,
x / dt / dit’ (yUe ! )Ff(t)}. (A9)
fo 1)
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